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*** 

The phrase ‘any loading’ in the title of the thesis means the following: 

‘variable (with respect to the t time) plane state of stress having components σx(t), σy(t) 

and τxy(t) that may vary in any way: cyclic or non-cyclic (in the second case, deterministic or 
random); one of the three components may remain constantly zero, or two of the three 
components may remain constantly zero (then the state of stress is uniaxial or pure shear); 

in the general case, the oscillograms of the stresses σx(t), σy(t) and τxy(t) are all of them non-
zero and have non-cyclic, arbitrary (or random) and non-proportional variations’.  

In order to avoid such a long description, the short phrase ‘any loading’ has been 
preferred.  

In fact, ‘any loading’ means ‘any stressing’ but the fatigue researchers say much 
oftener ‘loading’ for ‘stressing’. With that, it is expected to be understandable that fatigue 
‘loading’ does not mean loads as definitely variable forces and/or moments but variable 
stresses causing fatigue of the material. Those stresses are caused by forces and/or 
moments that may even be constant (for example, constant forces on a carriage axle cause 
variable stresses due to the rotating bending). 

The above paragraph is an answer to an otherwise just remark of the scientific jury 
member Professor L. Lazov: why ‘loading’ after talking about stresses? 

By the way, the author had put the term ‘stressing’ instead of ‘loading’ in the title of his 
first publication [176] in J. Fatigue. 

 

 

*** 

To facilitate the readers looking for details in the thesis, the pagination of the thesis is 
also given in the Contents of this summary together with its own pagination. 
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FOREWORD 

 
The phenomenon of fatigue of materials due to variability of loading was realized in 

19th century. Most of the fractures of engineering structures are due to fatigue and the 
consequences are disastrous. How to envisage in what operational lifetime fatigue failure 
would occur, i.e. how to assess the fatigue life, has been one of the most important 
engineering problems for the last two centuries. There was not any uniform and all-

acknowledged solution under any loading including the general multiaxial case of non-

proportional, non-cyclic and arbitrary wave-forms of the stress components. According to the 
thesis, the lack of solution was since the fatigue life had not been searched by means of an 
integral of fatigue damage differentials. Such a possibility had not been revealed and 
exploited before but it can be practically implemented nowadays thanks to the computers.    

The thesis opens a new scientific research line under the IDD abbreviation. The 
underlying statement is that only the universal mathematical way of the calculus from 
differentials to an integral can establish a uniform and all-acknowledged solution to the 

problem of fatigue life evaluation under any loading. The new line proposed would re-direct a 

vast world-wide research experience, accumulated for nearly two centuries, into another 

course. The basic notion of that experience is loading cycle and therefore the hitherto existing 

approach is called Cycle Counting Approach (CCA). In the thesis, another, new and radically 

different IDD approach is proposed: the basic, general notion is loading differential, while 

loading cycle remains as a particular notion, and the damage differentials per the separate 

loading differentials are integrated (summed). That such differentials are introduced for 
fatigue life assessment may have the same importance which the differentials introduced in 
the mathematics and exact sciences generally have: decisive.      

The development of the IDD approach and creating unique IDD software has been 
done by the author only what has inevitably engaged a lot of time: about 30 years. Since 
everything proposed here is entirely original and without any existing analog, the colleagues 
in the world and in Bulgaria have taken an explainable position of waiting for results. Thus, 
the IDD work continued most of the time without any collaborators, nor any financial or other 
support. Nevertheless, the IDD approach has become well-known and discussed in the 
world.    

What is said above, as well as the necessity of juxtaposition to the nearly two-century 
CCA experience, explain the inevitable fact of a comparatively large volume of the thesis: 
353 pages (with expanded line spacing and with an IDD-software manual included). But the 
colleagues that will study it, as well as the members of the scientific jury, will quickly orientate 
themselves to the main points. To help them, this Summary, this Foreword and an extended 
peculiar Preview serve. Then, the Conclusion and the Contributions (i.e. novelties presented 
separately) can be read. Afterwards, the details can be entered: the new notions, the 
mathematical instruments, the software created for practical application of the author’s IDD 
method, the verifications carried out and their results, and so on. The volume of these details 
has been compressed to an acceptable minimum.  

The IDD site cited above has been organized in a way as to also facilitate the study of 
the thesis. Besides, the site offers the IDD software as freeware. As well, the site gives the 
files involved in the sections of the thesis and in the verifications.               

Eventually, this foreword hints that the thesis is expected to evoke great interest and 
opinions under considerable scientific responsibility on the part of the scientific jury members 
and the other colleagues. To all of them the author renders homage and his expectation of a 
just evaluation. 
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PREVIEW  
 
 

A treatise on the differentials and integrals 
 

Mankind had been at a standstill in science and technology for millennia in succession 

by year 1600, i.e. by 17th century. This related to non-development of mathematics. What 

actually happened to the human being’s thinking after 1600 so that, in four centuries only 
comparatively to millennia of standstill, a lot of sciences suddenly progressed and enabled 
the contemporary scientific and technological miracles? 

What happened in 17th century is that the idea of infinitely little quantities 

(infinitesimals) was carried out. This was an infinitely great jump of the mankind. The 

calculus was developed starting with the notion of a derivative function f(x) = dF(x)/dx and its 

primitive function F(x). The famous Newton-Leibniz theorem is well known: a definite integral 

with a variable upper limit xmax is a function F(xmax) from which f(x) is obtained by 
differentiation. This is a key interpretation for the thesis giving a surprising result discussed 
below.    

After the fundamental Newton-Leibniz theorem, what was revolutionarily developed is 

the general and universal mathematical way for obtaining relations searched among 

variables: namely as integral results from integration of relations found on a differential 

level, under any integration conditions. Respectively, if the differential and integral approach 

is not applied to a scientific field, then there will not be any uniform, all-acknowledged and 

universal method in a general formulation of the problem i.e. under general integration 

conditions. Instead, there will be: hundreds of methods proposed in particular formulations, 
i.e. individual results under conditions which would have been particular integration 
conditions if researchers had integrated; hundreds of attempts to carry particular solutions 
onto a higher level of generalization what actually are trials to inductively adapt results from 
simpler integration conditions to more complicated ones; thousands of written papers 
resulted from scattering efforts. 

Hence, it becomes apparent why IDD is proposed for fatigue life assessment under 
general (any) kind of loading: because namely in this field of research the general deductive 
mathematical way from differentials (of fatigue damage) to an integral had not been applied, 
namely under general (any) integration conditions (of loading). Instead, researchers went 
inductively from particular solutions to adapting them in a more general formulation, in many 
different scattering ways, without reaching a general and uniform method. To happen so was 
for historical and technological reasons (the future computers were still missing). Yet it is the 
high time to try with fatigue damage differentials and their numerical integration. 

  
 

Retrospection of IDD 
 

For taking up an exact attitude towards the proposed IDD method, it is of importance to 
know how the method was initiated and developed, and what a reception it had. 

After additional mathematical education for graduated engineers held in the so-called 
‘Block B’ of the Technical University of Sofia, the author started 1976 postgraduate (doctoral) 
studies. This happened at Department of Strength of Materials of the same Technical 
University of Sofia, in the research line of fatigue life. The director of the doctoral studies was 
the department head Professor Petar Levchev Ganev. 

After the literature review done it became apparent that nobody had searched for 
fatigue life by means of an integral of fatigue damage differentials. At the root of fatigue life 

knowledge the empirical relation lies which is known as S-N line or Wöhler line. All the 

following studies were mostly on it. The S-N line represents an exponential relation between 

σa and N where σa is the amplitude of a cyclically varying stress and N is number of cycles to 
fatigue rupture. 
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Yet, from the IDD point of view, the S-N line i.e. the empirical relation N = N(σa) can be 
treated as an integral result from summing (integrating) fatigue differentials per stress 

differentials dσ during time differentials dt. The integration condition of this result is a simple 

particular case of cyclic σ variation: σ(t) = σasinωt. However, no one had looked at the S-N 

line namely from this point of view. Therefore, no question had been brought up for a 

differential dσ entailing some fatigue differential so that the Wöhler relation N = N(σa) would 

result from integration of such differentials under the condition σ(t) = σasinωt. If this had been 
done, other integrations would immediately have been also done under any other non-cyclic 

(non-periodical, non-sinusoidal) σ(t) oscillograms. Instead, a different thing happened: after 
the pressing question arose of how to predict fatigue life under an arbitrary, non-cyclic, 

deterministic or random σ(t) oscillogram, a process started for adapting the integral result 

from the case σ(t) = σasinωt.  

In other words, all the researchers directed themselves to looking for cycles with 

different amplitudes σa,i in a non-cyclic oscillogram σ(t). The latter was considered as a 

loading with a variable amplitude which accepted the different values σa,i, i.e. σ(t) was 

replaced by a series of cycles with σa,i amplitudes. The next adaptation to the S-N line was 
developed as follows. Researchers assumed that a so-called (relative) fatigue damage 

1/N(σa,i) occurs per one cycle with σa,i. The N(σa,i) life, shorter denoted as Ni, is taken from 

the S-N line. If the same cycle repeats itself to failure, the latter would occur in Ni cycles and 

the cumulative (relative) damage DΣ = Σ(1/Ni) would reach its full value 1 (i.e. 100 %). Thus, 

ni < Ni repetitions of σa,i would make damage ni.(1/Ni) = ni/Ni. After summing such ni/Ni 

damages from the different (grouped) σa,i amplitudes, then the life is determinable from the 

equation Σ(ni/Ni) = 1. 
Such an approach dates back to the 20s of XX century after a similar idea of Palmgren. 

It was developed by Miner in the 40s. That is why determination of the life so that Σ(ni/Ni) = 1 

(or some revised value instead of 1) is called the rule of Miner (or Palmgren-Miner). 
Following the vein of the above treatise, the Miner rule is a way of adapting the integral result 

(the S-N line) under the particular integration condition σ(t) = σasinωt to an arbitrary condition 

σ(t). And, under such an interpretation, what happened later becomes already recognizable: 
a lot of methods were proposed for distinguishing cycles in a non-cyclic oscillogram and 
counting them. Such processing is also called schematization or decomposition of the non-
cyclic oscillogram. In the last decades, the Rain-Flow Method of the CCA (the cycle counting 
approach) is the most popular. In Europe there is also Eurocode 3:1993 Reservoirs Standard 
(according to a note of Professor Lazov during preliminary discussions on the thesis). 

In contrast to that all, the sacred calculus equation dF(x) = f(x)dx was addressed. 

Analogously and merely, the equation dD(σ) = R(σ)dσ was built. Here, D(σ) is (relative) 

fatigue damage which changes by the differential dD(σ) per dσ ; R(σ) is derivative of D(σ) 

and as such is intensity of fatigue damage. Correspondingly, the D(σ) damage function is the 

primitive of the R(σ) damage intensity. If integrating dD(σ) = R(σ)dσ under the condition σ(t) 

= sinωt for one cycle i.e. for one time-period T, then a relative fatigue damage per one cycle 

will be obtained. It is 1/N(σa). Vice versa, if differentiating suitably this specific integral result 

1/N(σa) as a primitive, then the derivative R(σ) can be determined according to the Newton-
Leibniz theorem. 
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Hence, the determination of the damage intensity R(σ) (and thereafter operation on 

differential level of damage) can be done by relevant differentiation of a concrete 1/N(σa) 

primitive represented by the S-N line. After that, dD(σ) = R(σ)dσ can be integrated under any 

arbitrary stress-time function σ(t). Thus, there is no need of preliminary distinguishing and 

counting cycles i.e. no need of CCA (what is the surprising result mentioned above). And thus, 

the thesis advances a radically different idea of using an S-N line from cyclic loadings for 

fatigue life evaluation under arbitrary non-cyclic loading. 

The σ stress above is meant to represent a uniaxial state of stress i.e. one-component 
loading. The development of the engineering in 20th century posed the question of the fatigue 

life under multiaxial stress at surface points where, besides σ(t) ≡ σx(t), also σy(t) and τxy(t) 

may act. In case the three σx(t), σy(t) and τxy(t) oscillograms vary proportionally, the 

stressing is tantamount to one-component loading. Indeed, it is again represented by a single 

variable. If the latter is denoted as s, then again it comes to a single s = s(t) oscillogram. 

Again one S-N line can be used. The next problem is that, in the general case, the multiaxial 

(multi-component) loading is non-proportional: with three totally different σx(t), σy(t) and τxy(t) 
oscillograms. 

How did researchers start evaluating the fatigue life under multiaxial non-proportional 
loading? Again in the vein of the above treatise, what happened is expectable: without any 
loading and damage differentials defined in this general case, and therefore without any 

integration under arbitrary three-component conditions σx = σx(t), σy = σy(t) and τxy = τxy(t), 
researchers started creating numerous methods. And, if under uniaxial loading many tens of 
criteria were proposed, then under two-component and three-component loading their 
number would increase to the second and third power. It became very complicated while 
doing trials to generalize some results from one-component loading to two- or three-
component loading. Such trials required certain concepts (theories) for fatigue equivalence 
between multiaxial non-proportional loading and one-component loading, respectively for 
reducing the loading multiaxiality. Many concepts and many corresponding conceptual 
problems appeared.  

Whereas, if integrating fatigue damage from a differential level of multiaxial stressing, 

directly under arbitrary σx(t), σy(t) and τxy(t) oscillograms, then any necessity of reducing the 

loading multiaxiality drops out, neither is there any need of looking for cycles and counting 

them. The mentioned conceptual problems do not appear. 

But how to define a loading (stressing) differential (labeled with ds) under three 

components σx(t), σy(t) and τxy(t)? Under one only component σ(t) ≡ σx(t), the differential ds 

is quite simple according to above: it is dσ. However, under three components, the definition 

of ds is not that simple at all: the three stresses are tensor-like dependent on (variant of) the 

choice of the x and y axes. Hence it is first to solve the problem of how to compose a three-

component loading differential ds which is independent of x and y. The next problem: 

provided that ds is defined, how to compose the damage differential dD? 
These problems were a true challenge to the author’s mathematical setting from the 

‘Block B’ (and after some accumulated professional experience in algorithms and computer 
programming in a computer-processing center). A term of trajectory was introduced as a 

path described in the σx-σy-τxy coordinate system. It is obvious that while the describing 
running (current) point of the trajectory is going away from the coordinate origin, the damage 
intensity is rising. Then it stands to reason to associate the cumulative damage with 
accumulation of a (curvilinear) integral along the trajectory: the latter is composed by 

infinitesimal segments that are, in fact, stressing differentials ds. Per every ds, a damage 

differential dD is added with a damage intensity which steeply rises while σx, σy and τxy rise. 

However, this σx-σy-τxy trajectory is, as already understood, tensor-like variant, i.e. it will 

radically change if different x and y axes are chosen.  
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Therefore another, invariant trajectory must be introduced. This is the trajectory of the 

principal stresses σ' and σ" i.e. the trajectory described in the σ'-σ" coordinate plane. 
However, the rotation of the principal axes ' and " would be omitted in this way. How should it 
be accounted? 

After all, to the attention of the director Prof. Ganev and of the department, a three-

component differential ds in the coordinate system ε'-ε"-dγ was submitted; ε' and ε" are the 

principal strains, and dγ is a shear-strain differential. Addressing strains instead of stresses 

was influenced by Prof. Ganev who searched for application of an εx-εy hysteresis loop 

discovered by him. The idea of ds in ε'-ε"-dγ coordinates remains the same in σ'-σ"-dτ 
coordinates as presented in the thesis. 

The director and the department took intense interest in the ds differential proposed. 

The multiaxial (three-component) loading could already be represented as a multitude of ds 

differentials. They are technically formed as finite ∆s differences that are short enough and of 
a sufficiently great number. Thus IDD was formed as a numerical method enabled only by 
means of a computer. By the way, for the necessity of a computer, the IDD method would not 
have been proposed for practical application earlier than e.g. 1970. In fact, the method hit 
upon the beginning of the mass computerization and the entailed possibility of numerical 
differentiation and integration in a large volume. On this basis, also in other scientific fields, 
methods were developed that had been unthinkable before. And, finally, contemporary kinds 
of software appeared for finite elements (FE) modeling.    

The idea of ds and the first computer programming already done were published 1978. 
This is the registered beginning of the IDD method (the name ‘IDD’ was accepted 2009 and it 

substituted the previous name ‘Integral Method’). After ds, the damage differential dD was 

also postulated, first in the simplest way from above: dD(s) = R(s)ds. This was a hypothesis 

(published 1979) that the same damage intensity R(s) could be used under different 
integration conditions. The PhD dissertation was successfully defended 1980. 

The director envisaged a great future for IDD in combination with input S-N lines 

obtained in an accelerated manner based on his εx-εy hysteresis loop. Unfortunately, he fell ill 
1984 and passed away 1985. The new department head, Prof. Stoyan Nedelchev, did such a 
personnel policy (in a communist manner) that the final result for the author was leaving the 
Technical University. The author’s career continued at the Faculty of Forest Industry of the 
University of Forestry where the author became an associate professor 1991. 

At that time Bulgaria opened itself to the world and the author returned to the method in 
order to popularize it internationally. It seemed that the very idea to sum fatigue damage 
differentials directly under any loading, without any cycle counting or reducing stress 
multiaxiality, would find the same respect and support as in the Department of Strength of 
Materials 1978 - 1984. Introducing the damage differentials and an integral of them seemed 
to have the same revolutionary importance for the fatigue life research like the importance of 
introducing differentials and integrals into the mathematics and related exact sciences. It 
seemed that the Integral Method (IDD) would immediately be taken up from the world fatigue 
life research authorities and institutions. 

In 1993 there was a two-month author’s study visit to the one of European centers of 
fatigue research: the Prof. Zenner’s IMAB-institute in Clausthal, Germany. Prof. Zenner, as 
one of the world fatigue research authorities, and his collaborators showed some interest to 
the Integral Method. But they only wished success in its development: they had their own 
scientific program and financing, and each colleague had his own task. 

The author was successful to have four papers published in Int. J. Fatigue 1993 – 
1997. Each publication took one-year effort. The referees showed reserves about the 
unknown author from Bulgaria who tried to propose something nontraditional.  
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The fourth paper was dedicated to the interesting characteristic loading case in which 

the principal axes rotate but the principal stresses remain constant. This case was revealed 
thanks to IDD and the paper emphasized that it remained undeservedly unnoticed; that it is 
very important because it is a ‘maximized’ case. A lot of fatigue life criteria should be 
approbated under such loading to check their validity. Then, many of them would fail.  

After this fourth paper, Int. J. Fatigue did not admit to publication a fifth paper 
submitted. In it, the point was openly set that the whole world fatigue life evaluation 
experience should be redirected to relations on differential level from where free integration 
should be done as a uniform method under any sorts of loading. Another paper, ‘Fatigue Life 
Prediction without Cycle Counting (Using an Integral)’, was also denied. A situation became 
apparent that the Integral Method is not accepted by the authors and supporters of the many 
existing CCA methods established also by government standards. 

But later, already on a regional level in Bulgaria, the paper ‘Fatigue Life Prediction 
without Cycle Counting (by Means of the Integral Method)’ was accepted and published in 

the J. Theoretical and Applied Mechanics (of the Bulgarian Academy of Sciences). 
In the meantime, Prof. Ewald Macha from the Technical University of Opole, Poland, 

took an interest in the Integral Method. This stimulated building a team with the author 
leading and with participation of Prof. Macha and his Polish collaborators for doing 
“Development of the Integral Method for Fatigue Life Prediction under Multiaxial Non-
proportional Arbitrary or Random Loading”. Under this title, the Bulgarian Science Fund 
granted some financing (‘ТН-545/95’ contract with the University of Forestry). However, for 
the post-communist crisis and inflation in Bulgaria at that time, the resources quickly 
exhausted. Besides, a negative situation occurred in the relations with the Polish colleagues 
(details, including curious ones, can be read in the thesis).  

Another stimulus appeared in connection with Prof. De Mare and his collaborators from 
Sweden. It turned out that they, independently and in a later time, enabled fatigue life 
prediction under one single oscillogram by using its instantaneous ordinates instead of 
amplitudes, what is the same with the Integral Method. Respectively, they also defined 
damage intensity although they did not call it so: it is their function g(s) which equals the IDD 

R(s) intensity in the particular case of zero static level of the oscillogram. They had not 
initiated the idea of loading and damage differentials and correspondingly they did not talk 
about an integral of such differentials. 

Prof. De Mare was contacted for cooperation. An invitation followed and financing on 
Swedish part was provided to the author for a study visit to Sweden and participation in the 
Workshop ‘Statistical Methods in Fatigue of Materials’ 1998. A talk was given in which the 
Integral Method was briefly represented and its point of intersection with the Swedish 
authors’ model was shown. А call was extended for joint effort for a new approach to fatigue 
life prediction starting from differential level. The response was reserved. After all, the 
Swedish colleagues did not show any intention to generalize their method to something more 
than its original direction.     

It became more and more apparent that whether the Integral Method would really be 
the right new approach or not is on the one hand only. On the other hand the circumstance 
was that a global acknowledgment of the Integral Method would require from the other 
authors to reevaluate, readjust or even deny their own concepts. However, they made their 
careers and obtained finances thanks to their concepts. Hence, the reserved attitude or even 
a preliminary negative aptitude to IDD seems to be logical. The author nearly gave up next 
trials. 

In 1998, a second two-month study visit to the Prof. Zenner’s institute, Germany, was 
enabled again. A touch with the University of Braunschweig was enabled, as well, and a talk 
was also given there. On a conference in Sheffield, UK, IDD was also talked. Within the 
period 1999 – 2003, the author was to the US for two years and a half. In 2002, he was a 
visiting professor at the Illinois Institute of Technology, Department of Mechanical, Materials 
and Aerospace Engineering (MMAE). Some attempts were made to engage MMAE and 
other American colleagues with the Integral Method. But they kindly denied for being busy in 
their own tasks and projects. After all, persistent IDD f0llowers were not found. 
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Thus, the work on IDD broke again. Subsequently, the method proved to be already 

well-known and discussed in the world. There was the acknowledgement that the IDD 
concept is far beyond the scope of the previous studies. There was, as well, negative 
reaction on the part of persistent CCA followers. This additionally showed that the work must 
continue, and cooperation and IDD adherents should be found. Besides, an IDD public 
defense procedure should be evoked as an additional way to engage the attention and 
valuation of more people.    

A next stimulus appeared again. It came on the part of a doctorand (postgraduate 
student), assistant professor Boyan Stoychev, from the Department of Engineering 
Mechanics at the Technical University of Gabrovo, Bulgaria. Collaboration started for building 
a new testing machine for rotating bending combined with constant torsion designed on the 
basis of an author’s scheme. The experimental data obtained served for a successful IDD 
verification (in Chapter 5). 

A Bulgarian IDD site, http://metodnaintegrala.hit.bg, was created in 2006. The method 
is popularized there in Bulgarian language. The thesis is also exposed there together with 
computer programs and files. As well, a Volume II is exposed containing expansions, 
supplements, details, etc. References to the IDD site are done for everything which belongs 
to the thesis or is its continuation but cannot be included in the thesis due to its limited 
volume.    

In English, the same site is http://www.freewebs.com/fatigue-life-integral. It became 
main means for popularizing IDD abroad and for establishing contacts with many colleagues 
throughout the world.  

As a result, collaboration with Dr. Jan Papuga and his colleagues from Czech Republic 
was established. Dr. Papuga is a young scientist who has a present and a future of a world 
authority on fatigue of materials, mainly for a site he had created: http://www.pragtic.com/. 
There, an ambitious so-called PragTic Project is exposed. It contains a large fatigue strength 
data bank, a lot of methods and software, communication in a PragTic society, PragTic 
forum, organization of regular annual PragTic conferences, and so on. On his site, Dr. 
Papuga proclaimed the integration of damage differentials without forming any cycles to be a 
revolutionary idea (http://www.pragtic.com/docu/PragTicA_Intro.pdf, p. 9). 

From the collaboration with Dr. Papuga, a paper resulted which was reported on an 
international conference in Darmstadt, Germany. In this paper, the IDD abbreviation was 
suggested and accepted as a better name. The reported IDD lives under one-component 
random loadings computed without using the rain-flow procedure (which otherwise was 
expected on the conference) proved to be the most accurate (Subchapter 3.3). 

In the summer 2009, a third two-month study visit to Germany was done, this time to 
the Fraunhofer Institute for Structural Durability and System Reliability LBF (Fraunhofer-
Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF), at the invitation of Prof. C. M. 
Sonsino. He is one of the world-famous scientists in fatigue of materials. Thanks to him and 
to his interest in IDD, this visit was very fruitful. An IDD study (70 pages), with the 
participation of Prof. Sonsino and the LBF director, Prof. H. Hanselka, was written. This was 
the LBF 2009 annual report which took the character of a monograph on IDD. As well, two 
papers devoted to IDD verifications were written with participation of other more LBF 
colleagues.   

The activity through the IDD site and the interest in IDD led to including the author in 
the Scientific Committee of the ICMFF9 (the Ninth International Conference on Multiaxial 
Fatigue & Fracture), Parma, Italy, June 7 – 9, 2010 (http://www.icmff9.unipr.it/). This 
conference is held once three years. The most known researchers in the subject come 
together to this conference and it is the most relevant forum for IDD. The author actively 
participated in the conference and reported an invited paper. Discussions on IDD and 
engaging the ICMFF9 audience attention to IDD were evoked. Other three more IDD papers 
were included in the ICMFF9 proceedings.  
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In the person of the ICMFF9 co-chairmen, Prof. Andrea Carpinteri from the University 

of Parma and Prof. Sonsino, the author found the long-expected acknowledgement and 
support for the importance of IDD. On their initiative, an invitation came for IDD publication in 

a special issue of J. Fatigue 2011 devoted to ICMFF9. All this turned into a good reason for 
finalizing and presenting the thesis.  

 
 
 
 
 
 
 

CHAPTER 1. REVIEW ON EXISTING METHODS WITH  
CONCOMITANT ANALYSIS AND CONCLUSIONS IN THE VEIN OF IDD.  

GOAL AND TASKS OF THIS THESIS 
 
 

1.1. Introductory notions, terms and symbols. Kinds of loading 
 

In this thesis, computation of limited life which may prove to be unlimited life is 

considered. The fatigue damage is accumulated under loading (stressing) that is variable 

with respect to the time. One (graph of a) stress-time function/ stress-time history s = s(t) or 

more than one represent(s) the variable stressing. The shorter term oscillogram for (the 

graph of) s = s(t) is used. 

Almost exclusively, fatigue plane stressing is considered in the engineering because 
fatigue crack growth usually starts from the surface of the body. Thus, two normal and one 

shear stresses act at a critical point of the body. They are usually denoted as σx, σy and τxy. 

Correspondingly, the loading (the stressing) is called multiaxial consisting of up to three 
components. This case is studied in the present thesis. However, IDD as a mathematical 
approach can be applied to six-component stressing, as well. 

The loading is uniaxial (simple) if only one of the oscillograms σx(t), σy(t) and τxy(t) is 

available (non-zero), and the other two are constantly zeros. Biaxial loading means that two 

oscillograms are non-zero. In this thesis, the terms of one-component (uniaxial), two-

component (biaxial) and three-component loading are also used. The multiaxial loading is 

also known as combined or complex. 

 The one-component loading is cyclic in case the stress-time function is periodical with 

a period (cycle) of time T, i.e. s = s(t + T). Simple variation of s(t) between constant smax and 

smin is understood: without any intermediate extrema (peaks, reversals). Loading which does 

not agree with this definition is called non-cyclic loading or non-stationary loading, or 

variable-amplitude loading. 

The one-component cyclic loading is most often sinusoidal: s = sm + sasin(ωt + δ) 

where sm is mean (static) stress (component), sa is amplitude, ω is angular frequency and δ is 

initial phase (angle), phase-shift (angle) or out-of-phase angle. The cyclic loading can also be 
non-sinusoidal, for example trapezoidal or triangular (or, to simplify an oscillogram, it is 

illustrated as triangular). Anyway, the following characteristics are introduced: smax, smin, sm = 

(smax + smin)/2, sa = (smax – smin)/2 and stress ratio R = smin/smax. The loading (cycle) is 

alternating (reversed, symmetrical) in case R = –1 i.e. smin = –smax and sm = 0, and non-

alternating (asymmetrical) (R ≠ –1, smin ≠ –smax, sm ≠ 0). In particular, with R = 0 the loading is 

pulsating. 
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The multiaxial cyclic loading is in-phase when the oscillograms have the same initial 

phase. Otherwise, the loading is out-of-phase. In case the out-of-phase angle between two 

oscillograms is 180
0
, the loading is in-opposite-phase. When the angular frequency ω or the 

frequency f = 1/T of the oscillograms is the same, the loading is of-equal-frequency. 

Otherwise, the loading is of-different-frequency. The in-phase (or in-opposite-phase) of-

equal-frequency loading is synchronous: the peaks in the oscillograms appear 

simultaneously. Otherwise, the loading is non-synchronous. In a wider meaning, synchronous 
loading is identified with proportional loading (defined below). 

The non-cyclic loading is random (stochastic) when the peak ordinates are random, or 

it is deterministic (the peak ordinates are predetermined). The random loading is a random 
process and as such it is subject to the theory of random processes. Correspondingly, a 
great number of publications relate to the research field of fatigue under random loading. It is 
to remark that uniaxial random loading is meant. The multiaxial random loading as a multi-
dimensional random process with multi-dimensional statistical characteristics remains, in 
principle, out of research (it can be in research only by means of IDD as discussed in 
Subchapter 2.8). 

The multiaxial loading is proportional when all the two or three oscillograms have the 
same shape in different scales, i.e. the ordinates of the oscillograms are proportional. As a 

matter of fact, one single oscillogram s(t) represents the multiaxial loading after multiplying 

with some constant ratios. For instance, the single oscillogram may be σ'(t): of the first 

principal stress. The second principal stress is σ"(t) = kσ'(t) where k = constant. Thanks to 

the single oscillogram, the proportional loading, although multiaxial, allows the same 

treatment as uniaxial loading. In case the oscillograms are non-proportional to each other, 

the multiaxial loading is non-proportional. 

The general loading case is multiaxial, non-proportional and non-cyclic loading (Fig. 

1.1-3a): an arbitrarily tangled curved trajectory (loading path) is described in the σx-σy-τxy 

coordinate space (Fig. 1.1-3b). The appearance of the trajectory depends on the choice of 

the stress axes x and y, i.e. the trajectory is variant (with respect to x and y). It represents the 

mutual variation (the mutuality) of σx(t), σy(t) and τxy(t). In general, no reversals are to be 

distinguished in this trajectory, nor any cycles to be counted.  

But instead of cycles, (variant) differentials ds (with components dσx, dσy and dτxy) are 

to be distinguished in the trajectory. Such a ds differential is shown in Fig. 1.1-3b. It ends at a 

current (running) t time, respectively at a current M point, and its beginning is at a preceding 

time t – dt. 

Arbitrary loading or any loading is any of the kinds of loading counted above, including 

the general case and primarily it (Fig. 1.1-3) since it includes the rest. As well, arbitrariness 

of the variations of the oscillograms is understood. 

It is typical for any oscillogram s(t) to fluctuate arbitrarily around an sm mean (static) 

value (level) (in Fig. 1.1-3а, the three oscillograms have static levels σx,m, σy,m and τxy,m). 

With that, a steady static level sm = constant is supposed. In more complicated and rarer 
cases, the oscillograms may also have parts of different character. Then, an unsteady static 

level sm = sm(t) ≠ constant can be introduced. Correspondingly, the IDD method can be 

developed in a more complicated version as to account sm(t) ≠ constant (Section 2.3.7). But 

for now, loading with sm(t) ≠ constant will be separated into sub-loadings (individual loadings) 

with different steady static levels that approximate sm(t) ≠ constant of the whole loading. IDD 
will be applied to the sub-oscillograms separately (the other existing methods are applied in 
the same way). 
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In their publications, the other researchers did not define general loading in the 

meaning of Fig. 1.1-3. Respectively, Fig. 1.1-3 is an original illustration (of which J. Fatigue 
has rights). The researchers did not reach the general loading case in Fig. 1.1-3 but some 
loading ‘arbitrariness’ or ‘complexity’ being always in the scope of some particular conditions.  

In case the fatigue occurs in more than 10
4
 cycles, it is called high-cyclic fatigue. 

Under 10
4
 cycles, it is low-cyclic fatigue. The high-cycle fatigue is typically dominated by 

elastic strains and the Hooke’s law is acceptable. Otherwise, comparatively great elasto-
plastic strains entail low-cyclic fatigue. The border between low-cyclic fatigue and high-cyclic 

fatigue is conditional (it could be 10
3
 instead of 10

4
).  

In this thesis, limited in volume like any other thesis, the IDD method is only verified for 

the (more important) high-cycle fatigue. Correspondingly, the stresses σx(t), σy(t) and τxy(t) 

are preferably treated that can be obtained by strain-gauges from strains εx(t), εy(t) and γxy(t) 
using the Hooke’s law. However, as a mathematical approach, IDD is applicable to low-cycle 

fatigue, as well. Then IDD is expected to be better in application directly to the strains εx(t), 

εy(t) and γxy(t). 

Supposing representative oscillograms are given in a T time-interval (Fig. 1.1-3а) and 

they repeat N times to fatigue failure. If the loading is random, it is supposed ergodic and a 

representative loading abstract is derived within T. The T interval plays the role of a period of 

time and therefore the same T symbol is adopted from the cyclic loading. Thus, the life 

means N repetitions of T to fatigue failure (to fracture or to a certain size of crack, or 

according to any other criterion of fatigue failure). In other words, the life is NT as duration. 
By means of a suitable multiplier, some other name can be assigned to the life, for example 
km run, operating hours, number of working moves, and so on. Under cyclic loading, N 
means, of course, number of cycles to failure. 

σx,m 

t 
σx 

σy,m 

t 

σy 

t 
τxy,m 

T 

τxy 

σx 

τxy 

σy 

ds 

M 

(t) 

(t – dt) 

No cycles are to be 
distinguished here but only 
ds differentials. 

 

(а) Three arbitrary oscillograms σx(t), σy(t) and τxy(t) 

(b) Trajectory of the mutual variation 
(the mutuality) of the three oscillo-
grams, and a variant loading 

differential ds  

Fig. 1.1-3. Multiaxial non-proportional and non-cyclic loading (the general case of 
loading) 
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In this Subchapter 1.1 in the thesis, an example follows that comes from the 

engineering practice in support of the discussed necessity of a universal method and of 
readiness for fatigue life prediction right in the general loading case (Fig. 1.1-3). In 1977, a 
research was carried out into the reasons for fatigue fractures of axles of a semi-trailer. 

The senior colleagues leading the research declared that, under the registered 
combinations of non-proportional random bending and torsion, no fatigue life evaluation 
could be done based on any indisputable standard method to be acknowledged by the 
affected party i.e. the manufacturer of such semi-trailers. That is why the colleagues did 

standard procedures only on σx(t) oscillograms from bending: schematization (cycle 

counting), building an amplitude spectrum, composing an S-N line, and then fatigue life 
evaluation based on the Miner rule. Even in this way the fatigue life predicted proved to be 

less than (although close to) 500 000 km: the postulated run to scraping. Later, after 
developing the Integral Method (the IDD) in its first version and enabling it to application, the 
torsion was also involved: the IDD life prediction was approximately 100 000 km now. 

According to latest studies, complicated, multi-spectrum and non-proportional loadings 
occur in the woodworking machines, as well. A large area is revealed for IDD application to 
scientific specialties at the University of Forestry (LTU) of Sofia. This has evoked writing the 
last, special Chapter 6 of the thesis. 

   
 

 
1.2. Fatigue life under cyclic uniaxial  

or multiaxial proportional loading. S-N line 
 
 

1.2.1. General notes 
 

Under one-component loading or proportional multiaxial (multi-component) loading, the 
running M point (Fig. 1.1-3b) oscillates on a radial straight line. It passes through the 

coordinate origin and serves as s axis. Under uniaxial state of stress, s ≡ σ ≡ σx ≡ σ' (σy ≡ σ" 

= 0, k = σ"/σ' = 0). Under pure shear, s ≡ τ ≡ τxy, |τxy| = |σ"| = |σ'|, k = –1. Under multiaxial 

state of stress, the s axis is away from the coordinate axes σx, σy and τxy at certain angles. In 

all cases, if the principal varying stresses σ'(t) and σ"(t) are computed from the 

proportionally varying stresses σx(t), σy(t) and τxy(t), then the s axis will lie in the σ'-σ" 

coordinate plane. The principal axes ' and " will stay immovable. For the s axis is radial, some 

characteristics under the uniaxial or proportional loading will be denoted with r index, and the 

loading itself will be called ‘r-loading’. 

The s axis can be separately considered (Fig. 1.2.1-1a): out of the coordinate system 

σx-σy-τxy or σ'-σ". If the r-loading is cyclic in particular, then the trajectory is represented by a 

straight-line segment of the s axis between smin and smax. Such a segment is illustrated (as a 

thickened one) in Fig. 1.2.1-1a. On the right of the segment, the trajectory is shown as 

‘unfolded’ with the time. In this way the oscillations on the s axis are revealed. 

Wöhler was the first to do systematic investigations of S-N diagrams (S-N lines, Wöhler 

curves) where S ≡ smax and most often smax = sa (R = –1). In the S-N diagram, experimental 

points with coordinates (smax, N) are plotted. They are too scattered (Fig. 1.2.1-1b) and a 
correlation line is drawn among them.  

Since the time of Wöhler until now, regular tests are carried out everywhere in the 
world for building S-N lines. A great number of the testing machines produce alternating 

loading (R = –1) by rotating bending. But there are also machines that hold the specimens 
kinematically immovable and exert on them bending, tension-compression, torsion, etc. 
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The Wöhler curve is really a curved line if it is really drawn in (usual, decimal) S-N 

coordinates. However, the usual scale of the N coordinate axis is too unsuitable since it 

stretches the diagram too much: if S decreases e.g. twice, N may become one thousand 

times as much. That is why N is plotted in a logarithmic scale (actually logN for N in Fig. 

1.2.1-1b). Basquin proposed a log scale also of the S axis (actually logS for S in Fig. 1.2.1-
1b). It proved that in this way, in double-logarithmic (log-log) coordinates, the Wöhler curve 
can be represented as a straight line very well: the mean-square deviation of the 
experimental points from the line is well minimized. In fact, a straight line of regression can 
be drawn according to the method of least squares. Thus, the most popular equation of the 

S-N line of (high-cycle) fatigue is 

 
  mlogsmax + logN = const = logA,      i.e.       smax

m
N = const = A                     (1.2.1-1) 

 
where m is the (indicator of the) slope of the line. The greater m is, the less slanting the S-N 

line is. The m slope varies widely: from 3 to 20 and more, most often between 6 and 15. With 

that, a five-percent change in smax (respectively, a five-percent error in measuring smax) can 
lead to a change in the life e.g. twice (respectively, an error of twice in evaluating the life). 

That is why, an error in the computed life in the order of twice or three times (error factor of 2 

or 3), even more, is acceptable. 

The S-N line is usually assumed to ‘break in two’ at the fatigue (endurance) limit sl (Fig. 

1.2.1-1b, in particular sl ≡ σ-1) and go horizontally to unlimited life (in the thesis, the l 
subscript is generally used as an index of limiting stress). Thus, Eq. 1.2.1-1 describes the 

sloping part of the S-N line and is valid for smax ≥ sl. In other words, Eq. 1.2.1-1 is of the 

limited life and gives both the function smax = smax(N) and the inverse function N = N(smax) at 

smax ≥ sl. For IDD, the inverse function N = N(smax) will be used. 
In historical retrospection, unlimited life was first required for the simple cyclic one-

component loading (with constant amplitude). In other words, s(t) should not exceed the 

endurance limit, i.e. s(t) < sl was required, conservatively, with a safety factor (ratio) n = 

sl/smax. Later on, the question of evaluation of limited life was always prompted. Indeed, when 
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the oscillogram s(t) is not with constant amplitude, then the condition s(t) < sl is not 

acceptable yet: provided that the highest peak is lower than sl, then the most of the rest 

peaks will be unnecessarily much lower than sl. In general, the present-day fatigue 

calculation is understood as not only providing the classic safety factor n = sl/smax but acting 
on a higher level of methods for computing limited life. For this purpose, not only the 
endurance limit sl but also the other two parameters m and A in Eq. 1.2.1-1 are to be 

involved. With that, A = sl
m
Nl where Nl is the number of cycles at the break of the S-N line 

(Fig. 1.2.1-1b). A popular Nl number is 2.10
6
 (two millions) cycles. 

Breaking an S-N line into a horizontal line is a simplified and controversial conception. 

The idea is also assumed of change of the slope at smax < sl, respectively at N > Nl: m 
increases significantly but not to infinity (corresponding to a horizontal line). As well, a 

smooth bend of the S-N line is envisaged from an upper level su (Fig. 1.2.1-1b) and an 

asymptotic approach to a lower level sr: a limit under which there is a no-damage area of r-

loading. The sl level is somewhere in the middle between su and sr. 

In the present IDD version, Eq. 1.2.1-1 is accepted for the straight part of the S-N line. 

Downwards, the S-N line will be treated in two modes: the classic ‘breaking’ mode at sl to a 

horizontal line, and a ‘smoothing’ (more accurate) mode with bending smoothly to sr < sl. A 

conditional number of cycles Nr will correspond to sr after extrapolating the straight S-N line 

to sr (Fig. 1.2.1-1b). 
 
 
 

1.2.2. Influence of a static (mean) stress 
 

Tests are done and an S-N line is built mostly for symmetrical (reversed) cycle, i.e. the 

S-N line is valid for sm = 0 and R = –1. Then, smax = sa,  sl ≡ smax,l ≡ sa,l where smax,l is the 

fatigue limit in terms of smax, and sa,l is the fatigue limit in terms of sa. As well, although less, 

tests are done and S-N lines are built as valid for sm ≠ 0. The experimental points are plotted 

in coordinates logsmax-logN or logsa-logN. When the coordinates logsmax-logN are replaced 

by the coordinates logsa-logN or vice versa, the experimental points will be re-plotted (in Fig. 
1.2.1-1b, the points have the same plotting only conditionally). Correspondingly, the 

parameters m and A in Eq. 1.2.1-1 will change since smax
m
N = (sm + sa)

m
N = A will not entail 

sa
m
N = A under the same m and A. 

The experimental investigation of the influence of sm ≠ 0 on the fatigue limit and on the 

whole S-N line requires building a family of smax-N lines or sa-N lines valid for different values 

of sm ≠ 0. If the different fatigue limits sl ≡ smax,l are plotted as ordinates versus the 

corresponding different sm abscissae, then a failure locus is formed known as Smith diagram 

(Fig. 1.2.2-1). And if the corresponding fatigue limits in terms of amplitudes sl ≡ sa,l are plotted 

as ordinates versus the same sm abscissae, then a failure locus is formed known as Haigh 

diagram (Fig. 1.2.2-2). Additional, more universal and simple names are sm-smax diagram 

(more precisely written with the l index: sm,l-smax,l) and sm-sa diagram (more precisely: sm,l-sa,l). 

Figs. 1.2.2-1 and 1.2.2-2 present concrete example diagrams (a steel with yield strength sY = 

320 MPa is meant). 

If all the limiting stresses in Figs. 1.2.2-1 and 1.2.2-2 are valid for one and the same Nl 

(for example 2.10
6
), then the two figures represent diagrams sm-smax and sm-sa of equal Nl life. 

Then, the diagrams can also be considered as representing restricted (related-to-life) fatigue 
limits. For the purposes of IDD and in general, diagrams sm-smax and sm-sa for any limited 

equal N life can be discussed. In Fig. 1.2.2-1, two more lines of equal lives (N = 10
5
 and N = 

10
4
) are illustrated (by dashed lines) in the sm-smax coordinates. 



http://www.freewebs.com/fatigue-life-integral/ 21

 
 
 

According to the sm-smax diagram, an increase in the static sm stress increases the 

fatigue strength in terms of smax. The reversed cycle with sm = 0 is the most dangerous to the 

fatigue strength in terms of smax. The smax-N lines are situated in their family next above 

previous with increasing sm. Thus, at the same smax and different sm values, the life will 

increase with increasing sm. 

This interpretation is carried into the vein of IDD as follows. Let dD be the damage 

differential per the loading differential ds during dt (Fig. 1.2.1-1a). Suppose dD = Rds where 

R = dD/ds is the intensity (the derivative) of the damage D = D(s). It is obvious that R = R(s) 

is an increasing function. It has some values for reversed cycle (sm = 0). Yet let a static stress 

sm ≠ 0 be set. Then, the values of R = R(s) will be less. That is, sm comes as a second 

argument on which the R function depends: R = R(s, sm). With increasing sm from zero, R(s, 

sm) decreases. 

Different descriptions of the relation sa,l(sm) are used. Gerber was the first to propose a 
parabola. Later, in many cases the Gerber parabola was considered to be a too convex 
curve. Goodman replaced the parabola with a straight line. However, this straight line 
eliminates any convexity while the experimental data testify for such. That is why additional 
proposals were advanced that are ‘in between’ the Gerber parabola and Goodman line.  

Interestingly, no proposal was found for a limiting curve passing right in the middle in 
between the parabola and the straight line. Therefore, also in addition to previous papers, 
such a proposal is done. The equation (Eq. 1.2.2-1) of that limiting curve can be seen in the 
thesis. Eq. 1.2.2-1 or any other equation with the same purpose serves to present not only 

the limiting line but also every line of equal N life in the sm-sa coordinates. Then, based on 

such an equation, the S-N line for any sm ≠ 0 can be hypothetically obtained from the basic S-

N line for sm = 0 (R = –l) (what is done further in the thesis) or vice versa. 
The existing fatigue life assessment methods based on counting cycles with amplitudes 

sa,i and mean stresses sm,i also need some selected analytical description of the sm-sa 

diagram. It is applied to every i and thus the mean stress effect, i.e. the effect from every sm,i 

≠ 0, is accounted while using the basic S-N line for sm = 0 (R = –l). Depending on what 

160 

135 

0 
sm 

240 

[MPa] 

1 

320 

Fig. 1.2.2-2. The corres-
ponding Haigh diagram 

smax (smax,l) 

sm     

smin 

160 

180 200 

270 

[MPa] 

170 

135 

40 
20 

0 

120 
140 

160 

sm 

240 

[MPa] 

1 
2 

3 

4 

5 

320 

240 

310 

320 

Fig. 1.2.2-1. Smith 
diagram as an example 

sa (sa,l) 

160 

70 

135 40 20 [MPa] 

2 3 4 5 

(2.10
6
) 

10
5
 

10
4
 



http://www.freewebs.com/fatigue-life-integral/ 22 

analytical relation sa(sm) is selected, the mean stress effect and the life are evaluated 
differently. 

 
 

 

1.2.3. About the S-N line under multiaxial state of stress 
 

It stands to mind that the approach of using an equivalent stress under static stresses 

could also be used under time-varying stresses. In other words, it is possible to write σequ(t) = 

σequ[σx(t), σy(t), τxy(t)]. However, such an approach comes in for serious criticism under 

arbitrary non-proportional σx(t), σy(t) and τxy(t). This will be shown in Subchapter 1.4. 

Yet, let σx(t), σy(t) and τxy(t) be proportional and cyclic. Then, an equation of the kind 

σequ(t) = σequ[σx(t), σy(t), τxy(t)] decomposes into two proportional equations of the same kind 

separately for the mean (static) stresses and the amplitudes. The equation of σequ,a can be 

replaced by the proportional equation σequ,max = σequ,max[σx,max(t), σy,max(t), τxy,max(t)]. 

The notion of lines of equal lives is a basic one in the thesis for reproducing S-N lines 
under any state of stress (multiaxial and uniaxial). Such a term was not introduced and 

established as basic before. Lines if equal lives in the σ'-σ" coordinate plane according to the 
Von Mises criterion are proportional (centrally similar) ellipses. 

In this Section 1.2.3 in the thesis, other more equivalence criteria (not only of Von 
Mises) are involved. The most treated criterion relates to the Gough and Pollard ellipse. It is 

shown that this ellipse corrects the Von Mises ellipse by substituting the actual σl/τl ratio for 

the hypothetical ratio 3  = σl/τl. The Gough and Pollard ellipse is usually associated with a 

safety factor n. But in the IDD vein, such an ellipse is more interesting as suggesting elliptic 

lines of equal lives in general. How to obtain then the S-N line at any k from such elliptic lines 
will be thoroughly considered in Section 2.4.7. 

 

 

 

1.2.4. Composing an S-N line 
 

Engineering books and manuals give a lot of data, graphs, factors and ratios reflecting 
the influences of not only sm and k on a real object’s S-N line but also of: the geometrical 
shape of the body and available stress concentrator; dimensions of the object; condition of 
the body surface; treatment of the body surface for strengthening; heat treatment; welding; 

corrosion; temperature; loading frequency; distribution of the stresses inwards along the z 
axis; and so on. 

One of the most important factors is the stress-concentration. The possibilities for 
determination of local stresses have much increased nowadays. More and more developed 
software is used for stress analysis based on finite-elements (FE) method. Researchers go 
more and more ‘inward into local stresses’ where stressing is multiaxial as a rule. 
Correspondingly, this would result in more interest in IDD. The technology for manufacturing 
of smaller and smaller strain-gauge rosettes, and for more precise strain-gauge 
measurement, has also become higher. Thus, researchers can also experimentally go more 
and more ‘inward into the local stresses’ by means of strain-gauge measurement. When the 

oscillograms σx(t), σy(t) and τxy(t) are of concentrated stresses, different than the remote 
stresses, then the fatigue life assessment is expected to be more accurate. 

After all, the problem of fatigue life assessment especially under cyclic r-loading is 

considered as conceptually solved: composing the corresponding S-N line based on a lot of 
experimental and theoretical experience accumulated in the engineering. IDD has nothing to 

add to that experience but will use it. S-N lines at different k values will be applied (in a way 

shown in Subchapter 2.4). It is obvious that the truthfulness of the used S-N lines will depend 
on the competence of the researcher who composes them. Thus, even from here it becomes 
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apparent that the IDD fatigue life assessment accuracy will depend also on the IDD user’s 
competence. 

 
 
 
 

1.3. Fatigue life under non-cyclic uniaxial  
or multiaxial proportional loading 

 
 

1.3.1. Cycle counting (schematization). Miner rule. Amplitude spectrum 
 
As understood from Preview, following the conservative notion of loading cycle, 

numerous methods appeared for replacing a non-cyclic oscillogram s(t) by a step-sequence 

of cycles with different sa,i amplitudes at the same mean (static) stress sm. This sequence is 

called spectrum of the sa,i amplitudes (Fig. 1.3.1-2а in the thesis). Next, the Miner rule is 
applied. 

The assumption for this rule is: the same damage DT = constant = 1/N is brought in per 

any repetition of the same cycle with the same sa amplitude until the fatigue failure occurs in 

N repetitions. This represents a hypothesis for constant damage intensity among the 

repeated cycles, i.e. hypothesis for linear summation of the fatigue damage (shortly called 

just linear hypothesis). It means that on the amplitude spectrum’s i-step the damage per 

cycle DT,i = constant = 1/Ni remains the same as in the case of keeping constant sa,i 

amplitude to failure. Ni is the abscissa of the S-N line versus the sa,i ordinate.  
 In case the loading is random, the step-sequence actually represents a histogram of 

statistical distribution of the amplitudes. When the number of the sa,i steps is great enough, 
the histogram turns into a practically smooth graph of the amplitude spectrum as a function 
(law) of distribution of the amplitudes. And if versus every sa,i amplitude the statistical 

frequency ni of its appearance is plotted, then the density of distribution of the amplitudes will 
be formed. It is a derivative of the function of distribution. 

Hence, a large field was opened for numerous statistical studies of random uniaxial or 
proportional loading. Various distributions laws known from the mathematical statistics found 
application. The probabilistic representation of the loading in relation to the probabilistic 

representation of the S-N line, involving also the mathematical theory of random processes, 
compiles the comprehensive probabilistic approach to fatigue life assessment. 

 

 
1.3.2. Cycle counting methods. Rain-flow method 

 
After Miner, the schematization (distinguishing cycles and grouping them in a 

spectrum) was definitely and absolutely accepted as an inevitable preliminary procedure for 
fatigue life evaluation. Every researcher was convinced that cycles must be introduced in a 
non-cyclic oscillogram for using an S-N line that is namely valid for cycles. Large-scale 
investigations started for enabling the schematization (in different manners). Many electronic 
cycle counting devices were invented for automation of the schematization. 

Retrospectively known methods for distinguishing and counting cycles are of: peaks, 

ranges, crossings, and many other or their modifications. The variety of methods indicates 
that it is difficult to achieve equivalency of the original and schematized loading, and some 
error is always admitted. Researchers demonstrate in many publications how a certain 
standard cycle counting method is not relevant under a specific type of random process, and 
some modification is proposed. 

 When the cycles are not put at one and the same sm level but at different sm,i mean 

stresses, this procedure is called two-parameter schematization. Then, a correlation table is 
used or two-dimensional distribution of both amplitudes and static (mean) stresses is built. 
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With the two-parameter schematization, not only one S-N line but a family of different S-N 

lines should be used for the different sm,i mean (static) stresses. This requires application of 

the knowledge from Section 1.2.2 after accepting certain formulation of the sm-sa diagram i.e. 

of the sa(sm) function. Such an approach seems to be more truthful. However, it immediately 
leads to a lot of different methods and to publications of many comparative studies 
depending on the choice of the sa(sm) function. In this Section 1.3.2 in the thesis, other more 
problems are analyzed. They increase the number of the methods proposed leading to 
differing fatigue life assessment results. 

The very transformation of sa,i in dependence on sm,i requires calculations that are only 
possible by means of a computer. Respectively, different computer programs proposed 

nowadays can be used for different ways of sa,i(sm,i) transformation. Besides, the loading 

statistical analysis in reference to both sa,i and sm,i is much more complicated and more 

varying in solutions than the one-parameter schematization (where no sm,i means stresses 
are introduced). 

That is why, in the previous decades there was a more popular approach of putting all 
the cycles with their non-transformed amplitudes at one and the same sm level of the whole 
oscillogram. This approach has a solid ground: the material is certainly ‘getting accustomed’ 

to sm of the whole oscillogram and can hardly ‘react immediately’ to the prescribed sudden 

transformation of sa,i at each shift of sm,i from one range to the next one. 
Before the era of computerization and analogue-to-digital converters for digitizing 

analogue signals, the method of crossings was the most convenient to be electronically 
enabled by means of the cycle counting electronic devices mentioned above. But later, 
thanks to the computers, the figuratively called Rain-Flow cycle counting method started 
dominating. It was accepted as a state (government) standard in the US, Russia and many 

other countries including Bulgaria. It is 
discussed in hundreds of publications. 

With the rain-flow method, the notion of 
cycles in a non-cyclic oscillogram is visualized 
and realized as indisputable on the basis of 
the strain-stress hysteresis loops (Fig. 1.3.2-
1). In this Section 1.3.2 in the thesis, many 
clarifications on Fig. 1.3.2-1 are done 
accompanied by essential remarks.  

 
 
 
 

1.3.3. Is it possible not to divide the 
loading into cycles and count them? 

 
After Miner, no one has ever raised the 

question of whether another way of fatigue life 
computation is possible instead of CCA 
(instead of the cycle counting approach, i.e. 
instead of preliminary dividing the loading into 
cycles and counting them). As already 
mentioned in Preview, the referees of Int. J. 

Fatigue did not admit such a question to be 
discussed and published in the 90s of the 
previous century. A trial was also done for 
publication in Int. J. Fatigue & Fracture and it 
was not successful, either (see this Section 
1.3.3 in the thesis for more details, including 
curious ones). 
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But, as already mentioned in Preview, the Bulgarian reviewers of J. Theoretical and 

Applied Mechanics acknowledged the possibility for fatigue life computation without CCA and 
admitted the author’s paper on the subject to publication. An additional paper treating the 
same subject was also published in Bulgaria. Next, there was a publication on an 
international level (see this Section 1.3.3 in the thesis for more details). 

The question of whether it is possible not to divide the loading into cycles and count 

them has its simple answer from the IDD point of view: the accumulated damage DΣ,T can be 

represented as Σ∆D, respectively as an integral of dD differentials, instead of using the 

Miner rule in the form (ni/Ni). And thus, the dD differentials can be integrated directly now, 
without any preliminary loading schematization (decomposition) into cycles grouped into any 
amplitude spectrum.  

 
 

1.3.4. “History”, “future”, continuity, static level 
 
When cycles are sought instead of dealing with the instantaneous (running, current) 

ordinates of the s(t) oscillogram, any possibility is excluded to determine the current 

(instantaneous) value of the damage DΣ(t) accumulated till the current t time. Damage per a 
part of a range cannot be determined, either. The material ‘does not know’ the future of the 
loading after t: the appearance of the next peak, its level, and so on. Not the material but the 
seekers of cycles are who want to know future peak(s) because they want to complete next 
cycle(s) after the last known peak. There is a logical paradox here: some damage has 
already been done but for its CCA evaluation researchers need to preliminarily know the next 
development of the loading. 

IDD is the method able to avoid such a ‘paradox of dipping into the future’ of the 

loading. As a mathematical approach, IDD allows determination of DΣ(t) only based on the 

loading history till the t time, since damage differentials dD per time differentials dt are 

determined and can be integrated from 0 to t. 

The introduced damage intensity R = R(s) = dD(s)/ds throws new light on the CCA 
problem mentioned in Section 1.3.2: whether the amplitudes should be arranged at one and 
the same sm or at different sm,i levels. In other words: whether one-parameter or two-
parameter schematization should be done. From the IDD point of view, if suddenly changing 
the damage per a range (a half-cycle) to another value per the next range due to a sudden 

change in sm,i, then the damage intensity R(s) will discontinue. Indeed, during the infinitely 

small increase ds of s at the transition from the previous range to the next one, the intensity 

R(s) will go through a finite increase i.e. discontinuity. However, R(s) implies some physical 
damage intensity which should be mathematically continuous.  

 
 

1.3.5. Linear and non-linear damage accumulation 
 
An essential remark to CCA is that to count cycles and group them in an amplitude 

spectrum excludes application of any hypothesis of non-linear damage accumulation. 
Indeed, the real sequence of the cycles in the schematized oscillogram, i.e. the loading 
history, is lost. In other words, the numerous statistical investigations of non-cyclic loading 
make sense only based on the linear hypothesis that is otherwise known from far back as 
conditional and not very accurate. After all, it proves that to take into account the non-
linearity of cumulative damage is practically incompatible with CCA. Hence, none of the 
proposed non-linear hypothesis was established in the engineering.    

Anyway, the existing methods are able, though, to fairly predict fatigue life based on 
the linear hypothesis. It is clear that they succeed thanks to some successful averaging the 
real non-linear damage accumulation to a linear one. As a matter of fact, the studies in this 
aspect are sooner aimed at finding out the conditions for validity of the linear hypothesis and 
its possible modifications. But they do not transform the linear hypothesis into non-linear one. 
True non-linear damage summation, especially for the general case of loading, is 
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mathematically only possible by means of IDD. Indeed, by summing damage differentials 
directly till a current t time, just the real sequence of actual fluctuations of stress is followed, 
i.e. the loading history is strictly kept. The non-linearity of accumulation of the damage 

computed will be achieved by setting the very cumulative damage DΣ(t) as a new additional 

argument of the integrand (Section 2.3.7). This means, the integral result DΣ(t) should 
immediately go into the integrand. Such mathematical reversibility can enable desired non-
linear summation. 

 
 
 

1.4. Fatigue life under multiaxial non-proportional loading 
 
 

1.4.1. Reduction (decomposition) of the loading 
 
As already emphasized, no cycles could be distinguished in the original trajectory (Fig. 

1.1-3b) of general non-proportional loading. Respectively, any knowledge of fatigue damage 
under loading cycles cannot be used directly. It could be applied but separately for any of the 

oscillograms σx(t), σy(t) and τxy(t) (Fig. 1.1-3а) with the idea to obtain next some ‘equivalent’ 
amplitude spectrum, or to reduce somehow the three oscillograms to a single one in which 
cycles could be counted by the rain-flow procedure, etc. Thus, a lot of researchers looked for 
some criteria for reduction of multiaxial loading to something that is one-component, 
simplified, containing some reduced parameters, etc. 

However, if thinking with the IDD notions, the following objection of principle will 

immediately arise: the separate treatment of the oscillograms σx(t), σy(t) and τxy(t) (Fig. 1.1-
3а) instead of their mutuality (Fig. 1.1-3b) will not be logical. Indeed, the damage differential 
dD per the loading ds differential (Fig. 1.1-3b) will obviously and primarily depend on the 

coordinates of the M point. This is dependence on the simultaneously and mutually 

appearing σx, σy and τxy at every t time. In other words, the original trajectory of the mutual 
variation of the three oscillograms (Fig. 1.1-3b) as original composition of the loading must 
remain into consideration. 

This logic seems to be not always advanced: some authors separately do cycle 
counting on the oscillograms, build separate amplitude spectra, and so on. However, such an 
approach takes the risk to lose the influence of the mutuality: with the same computed life, 
the same procedure can be reversely so done as to lead to a quite different trajectory with a 
quite different actual life. In other words, the reversed one-to-one correspondence will be lost 
if trying to reduce (decompose) the multiaxiality. 

In other words, the approach of reduction of loading multiaxiality has the weakness that 
the original oscillograms are mathematically not retrievable in one-to-one correspondence. 

Under the same ‘reduced thing’, infinitely many possibilities are left for varying the loading 

between two extreme cases: a maximized and a minimized one. Each criterion of reduction 

should be verified in both extreme cases, or in any refuting case, under the same ‘reduced 

thing’. Nevertheless, too many criteria are proposed without such verification and their 
authors do not consider at all any necessity of it. 

In this Section 1.4.1 in the thesis, other more serious remarks are entailed.  
 
 
 

1.4.2. Reduction to an equivalent stress 
  
Obviously, the first researchers of a varying multiaxial state of stress were under the 

influence of the classic strength theories for reducing a static multiaxial state of stress to an 

equivalent static stress σequ. In an inductive way of thinking, such reducing was transmitted to 
variable stresses. However, the reduction that transforms functions instead of constants will 
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entail an immense increase of mathematical poly-variety. Even this fact only is already 
disturbing because a way will be opened for a great number of methods. 

If a ‘reduced’, ‘equivalent’ stress-time function σred(t) ≡ σequ(t) = σequ[σx(t),σy(t),τxy(t)] is 

composed, the first objection will be: σequ(t) may be set to be a constant, great enough, 
without any fluctuations, nor any amplitudes: 

 
σequ[σx(t),σy(t),τxy(t)] = constant.                                     (1.4.2-1) 

 
Then, keeping this constant, various σx(t), σy(t) and τxy(t) can be composed. It is 

mathematically easy: in Eq. 1.4.2-1, two arbitrary stress-time functions, for example σy(t) and 

τxy(t), can be set, and the equation is solved for τxy(t). Such σx(t), σy(t) and τxy(t) can cause 

fatigue failure although σequ  is a constant. 
In this Section 1.4.2 in the thesis, there are other more remarks. According to them, no 

classic static equivalent stress can directly take the role of varying criterional stress for 
fatigue life assessment in case the loading is non-proportional. Such a role can only be 
played under proportional loading. This is easy to understand considering also the fact that, 
under non-proportional loading, the principal axes rotate and no immovable material plane 
remains always criterional. 

 
 
 

1.4.3. The concept of a critical plane and corresponding methods 
 

What was said in the previous section makes clear that if a critical criterional plane is to 
be defined, then all the immovable planes at a location of a point of the material should be 
examined. On every plane of any orientation, a normal stress and a shear stress act. They 

are denoted as σn and τn where n is the normal line of the plane. Following some criterion 
proposed, researchers should evaluate which plane is extremely stressed. It will be a critical 
plane on which the material is likely to break into a crack. 

An idea was established that the cracking process is led by the shear stress on the 
critical plane. The normal stress there has only a secondary, although necessary at the 
beginning, role for opening the crack but later the shear stress is what causes the crack 
growth. Determination of the critical plane as a plane where Maximum Shear Stress or Strain 
Range is located is known as MSSR concept established first. Next researchers paid more 

attention to the normal stress σn beside the shear stress τn. It was also expected that the 

total stress pn = σσσσn + ττττn (as a vector sum) is decisive. There are also two rupture modes 
investigated based on the normal and shear stress. 

For searching over the planes, Euler angles are used as angles of rotation of the x-y-z 
coordinate system about its origin which is a common point of the differently orientated 

planes. The determination of τn and σn depending on those angles is not an easy problem. 
Matrix and tensor manipulations are done and heavy mathematical expressions are 
obtained. In this Section 1.4.3 in the thesis, continuation of the respective analysis can be 
seen. But it is impossible to represent thoroughly the criteria and methods reviewed. Such 
representation would take too large volume and would have been worthy if the proposed IDD 
method had been on such a basis. 

In order to partly give an idea of the existing critical plane criteria, three of them are 
shown in Table 1.4.3-1 in the thesis: of Findley, Dang Van and Spagnoli. Accompanying 
clarifications are presented. The criteria are subject, however, to serious remarks formulated 
in the thesis. 
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1.4.4. Integral methods over the planes 
 

The critical plane approach has its opponents. It cannot distinguish if a plane is solitary 
in being the most stressed or whether there are (a multitude of) other planes, as well, which 
are equally stressed to the same extent. On this occasion, the author made the fourth 
publication in J. Fatigue that was not in favor of the concept of one critical plane (discussed 
in Sections 2.6.5 and 2.6.6). Besides one critical plane, the stressing of the rest planes will 
also influence the fatigue life. Thus, researchers developed the idea that the damage should 
be formed by means of an integral over all the planes, i.e. by means of averaging through 
damages from all the planes. 

In order to give, partly again, an idea of the integrals proposed, two of them are shown 
in Table 1.4.4-1 in the thesis: of Liu & Zenner and of Papadopoulos. Double and triple 
integration is done over the Euler angles. To show this in details requires writing a separate 
large scientific work.  

The remarks in the previous Section 1.4.3 in the thesis are also valid in this Section 
1.4.3, now to the integral methods. Besides, a basic question is to be addressed to the 

integral methods as follows. After they start from σx(t), σy(t) and τxy(t) and reach at the end 

some (double and triple) integral, and go through τn(t) and σn(t) by different combinations of 

the Euler angles, without any one-to-one correspondence with σx(t), σy(t) and τxy(t) (thus the 
mutual variation of the oscillograms is lost), and scatter into different versions of the different 
controversial concepts of what to take into account, how to integrate, how to form 
amplitudes, how to involve static stresses, how to generalize also for random loading and 
possibly use the Miner rule, and so on and so on, then: is it not much simpler, canalizing and 
more productive as an idea to formulate an integral for universal direct integration over the 

mutual variation of the initial oscillograms σx(t), σy(t) and τxy(t) in which the stressing of all 
the planes is encoded, and therefore there is no need of searching over them? 

The IDD method proposed develops namely such an idea. But it is not an integral 
method in the meaning of integration over the planes. Instead, the dD differentials of the 
fatigue damage are integrated. The ‘IDD’ name was subsequently introduced to avoid 
misunderstanding, as well: the old name ‘Integral Method’ often evoked wrong expectations 
that it must be an integral method over the planes.    

 
 

1.4.5. Non-proportional σσσσ(t) ≡≡≡≡ σσσσx(t) and ττττ(t) ≡≡≡≡ ττττxy(t) 

 
Fatigue tests under sinusoidal out-of-phase bending and torsion with equal frequency 

are much popular. They are comparatively easy for implementation and are convenient for 
verification of criteria. The beginning of such tests dates back to the 40s of the previous 
century and is associated with Nishihara & Kawamoto. They found out that for many 
materials the fatigue life increases with increasing the out-of-phase angle from 00 to 900. 
However, in many other cases just the opposite effect appears: the out-of-phase angle 
decreases the life. 

Fatigue tests under sinusoidal bending and torsion (out-of-phase or in-phase) with 
different frequencies are also popular. Besides, experimental studies under random non-

proportional σ(t) and τ(t) are carried out. In some investigations, peculiar oscillograms are 

also produced in order to obtain special trajectories in the σ-τ plane. Cyclic sinusoidal out-of-

phase or/and of-different-frequency σ(t) and τ(t), as well as non-proportional peculiar or 

random σ(t) and τ(t), are produced not only by bending and torsion but also by pull-push and 
torsion. Further on (in Chapter 5), IDD verifications will be shown under non-proportional 

cyclic σ(t) and τ(t).  

Even in the previous thesis, IDD approbation under non-proportional σ(t) and τ(t) was 
done. Both data of other researchers and author’s own experimental data were used. The 
own tests were carried out by a unique testing machine created. It produced vibrations of 
masses of an inertial device as explained and shown (in Figs. 1.4.5-1 and 1.4.5-2) in the 
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thesis. The specimen transmitted the vibrations and thus it was subjected to torsion and 
bending: both proportional and non-proportional, and having different interesting fluctuations. 

      
 

1.4.6. Rotating bending with steady torsion 
 

This subject is a particular case from the previous section but is individually presented 
here since the author took some special engagement in it. 

In rotating machine shafts, σ(t) ≡ σx(t) = σasinωt occurs due to the rotating bending 

together with τxy(t) due to torsion. In the simplest (and very popular) case, the torsion is 

steady (constant, static): τxy(t) = constant ≡ τ ≡ τm. And although this combination of adding a 

static τm to σasinωt is so often met in the engineering, it is not paid with priority and special 
attention in the books and manuals.  

To make up for this deficiency at least in Bulgaria, B. Stoychev developed his Ph.D. 
thesis consulted by the author as his first director (there was also a second doctorand’s 
director). A unique testing machine for rotating bending with steady torsion was created. Its 
design is based on a two-shaft statically indeterminate scheme adopted from the author. In 
this Section 1.4.6 in the thesis, a picture of the machine (Fig. 1.4.6-1 there) and additional 
clarifications can be seen. As well, a series of other more notes are exposed. Bulgaria, 
besides Portugal, was recognized on ICMFF9 as a European country having experience in 
fatigue studies under rotating (or rotated) bending with steady (or variable) torsion. A series 
of results from these studies are presented and used for IDD verifications further on in the 
thesis (in Chapter 5). 

It proves that τm added to σa may exert weaker negative influence on the fatigue 
strength than the expectations are, or even null influence, or even positive influence. Then, 
the question arises of why such an interesting and important effect remains somehow out of 
the range of vision of the researchers and why it is not traditional for them to verify their 

criteria in the loading case considered. A possible answer is: this loading combination of σ(t) 

= σasinωt and τ = τm = constant looks simple but would be tough and a failure for any 
criterion which needs searching over the planes. Indeed, this becomes apparent according to 
the analysis made in this Section 1.4.6 in the thesis. 

B. Stoychev tried to apply the Papadopoulos criterion. However, a new separate Ph.D. 
thesis should be written for that purpose. In contrast to this, the universal IDD method was 
immediately applicable to the concrete loading investigated. Hence, Stoychev put himself in 
the positive mood for IDD, and collaboration was established. He noticed that the Integral 
Method is much more rational and simple as a concept: it does not relate to searching over 
all the planes and facing the many controversial points but relates to direct integration over 
the loading trajectory (in which all the planes are encoded). The asymmetry of the loading is 

taken into account only once by means of σm,equ (Section 2.4.2) and such a question of 
asymmetry does not arise any more at every plane. What solely remains to do is to set good-
approbated and adequate IDD parameters. 

 
 

1.4.7. Non-proportional σσσσx(t) and σσσσy(t) 
 

The fatigue investigations under non-proportional σx(t) and σy(t) are less than under 

non-proportional σx(t) and τxy(t) since more technical difficulties are faced and the tests are 
more expensive. But in the recent decades, the technical possibilities were as developed as 
to stimulate more and more researches to do experiments under non-proportional stresses 

σx(t) and σy(t). A prerequisite for this is the development of the aircraft, spacecraft and 
marine engineering where the shell structural model is involved. It is typical for a shell to be 

in a biaxial stress state with components σx ≡ σ' and σy ≡ σ", and with immovable principal 

axes ' and ". By comparison, the beam model and rotating principal axes were discussed in 
the previous two sections.   
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In this Section 1.4.7 in the thesis, a series of notes can be found. Many criteria were 

applied under loadings with σx(t) and σy(t), but they were not verified also under loadings 

with σx(t) and τxy(t). 
  

 

1.5. Conclusions from the Review 
 

Conclusions were already done concomitantly while presenting the literature Review. 
Some more generalizing conclusions are to be added as follows.  

It looks it has become traditional that each author develops his own fatigue life criterion 
and verifies it by his own experimental data. Then some other author's data are not satisfied 
by that criterion, and a new one is suggested. Thus too many proposed criteria have been 
accumulated. Most of them have remained isolated each from other, without any option for 
comparison and competition. 

This conclusion is shared by other authors, as well. Dr. Papuga had even taken the text 
of the previous paragraph published in J. Fatigue and put it as a motto in his Ph.D. thesis. 

The existing criteria are nearly as many as the researches of established reputation 

are. All the criteria stay far from arbitrary σx(t), σy(t) and τxy(t), i.e. far from the real objects. 
There was no universal method that could link the separate criteria and provide a bridge to 
each other and to the general loading case. The great number of the criteria published is a 
fact which, by itself, obviously does not testify in favor of the approaches of decomposition, 
reducing, searching over the planes, etc.  

Thus, an engineer, even a competent one who primarily deals with fatigue life 
evaluation, would frustrate under the great number of quite different methods proposed for 
specific loadings and being often incompatible or contradicting to each other. There is not 
any universal and generally acknowledged method for the general case of loading under 
arbitrary oscillograms. But the engineer sharply needs such a universal method namely in 
terms of the loading. He would prefer some software as a ‘black box’ enabling the respective 
method under simple instructions and requiring few universal parameters to be set with 
easily understandable influence on the result. With that, the engineer will not be obliged to 
know the ‘black box mechanism’. He will not have to turn every fatigue life assessment into 
writing a scientific work of his or of a professor attracted for collaboration. 

Hence, as already understood, as an alternative to the existing methods, IDD with 
corresponding software is proposed to take the role of the missing universal approach for 
fatigue life computation. There is a Fig. 1.5-1 in the thesis which figuratively illustrates the 
difference between the other methods and IDD while looking for the cumulative relative 

damage DΣ. The principal IDD advantage is visualized: the direct summation of damage 

differentials dD under any σx(t), σy(t) and τxy(t). 

Of course, with the new treatment new questions arise. How to introduce ds and dD 
under general loading? What is the relation between them? How will IDD be practically 
enabled? Based on what input data? And so on. 

 
 
 
 

1.6. The goal and tasks of this thesis 
 
The goal of the thesis was: to develop theoretically and practically and advance the 

new IDD concept as a new research line for fatigue life assessment that is integration of 

fatigue damage differentials dD per loading (stressing) differentials ds to a critical 

accumulated damage by an integral computed universally under any sort of loading (under 

any integration conditions) and directly (without any preliminary, considered equivalent, 

transformation of the original loading done by forming and counting cycles, decomposition, 

reduction, etc.) 
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For achieving this goal, the following tasks are fulfilled which represent a concrete IDD 
method (the author’s IDD version). 

1. Formulating the differential ds of the loading (the plane stressing) under any 

oscillograms of its components σx(t), σy(t) and τxy(t). 

2. Formulating the differential dD of the relative fatigue damage by involving input S-N 

lines as traditional empirical fatigue life characteristics. 

3. Building the mathematical theory of the integration of the dD differentials. 

4. Creating the basis of IDD application in statistical (probabilistic) interpretation 

under random loading. 

5. Developing a reduced version of the method under a single oscillogram s(t): under 

uniaxial or multiaxial proportional loading. 

6. Creating software to make the method work by means of a computer. 

7. Approbation (verifications, tests) of the method with published experimental data of 

other authors. Creating an initial data bank of the empirical factors fc and fτ of 

loading non-proportionality, as well as for prescriptions for setting the Nc and Nτ 

parameters. 
 
 

 
CHAPTER 2. IDD THEORY 

 
 

2.1. Loading (stressing) differential 

 
2.1.1. Stress differentials dσσσσx, dσσσσy and dττττxy 

 
Fig. 2.1.1-1c shows (the projection of) an infinitesimal cubic volume (cuboid, orthogon, 

parallelepiped) on which the stresses σx(t), σy(t) and τxy(t) = τyx(t) act. They compose, at the 

current t time, the state of stress denoted as (s). The increment dt from t can be introduced 

as the usual mathematical style is and as it is accepted in other sections of the thesis. But dt 

can also be introduced from the preceding (previous, old) time tp = t – dt to the current t time. 
This was preferred in the general case of (non-proportional) loading as more convenient for 
algorithmization. The preceding state of stress at the preceding time tp = t – dt is shown in 

Fig. 2.1.1-1а and is denoted as (sp). Respectively, the stressing (loading) differential (ds) 
appears in Fig. 2.1.1-1b. 

The physical meaning of (ds) is the state of stress that is the infinitesimal change of the 
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(sp) state of stress during dt. After adding (ds) to (sp), the current (s) state of stress is 

obtained (Fig. 2.1.1-1c). The following notation will also be used: (sp) ≡ (σx,p, σy,p, τxy,p), (ds) ≡ 

(dσx, dσy, dτxy) and (s) ≡ (σx, σy, τxy). Thus, the equation (ds) = (s) – (sp) can be written that 

means dσx = σx – σx,p, dσy = σy – σy,p and dτxy = τxy – τxy,p. 

On the other hand, the components dσx, dσy and dτxy form the infinitesimal ds element 

of the trajectory (Fig. 1.1-3b). Correspondingly, the ds label (not in parentheses) will 

represent a geometrical form of the loading (ds) differential.  
The problem arises as already mentioned in Preview: all the stresses in Fig. 2.1.1-1, as 

well as ds and the whole trajectory in Fig. 1.1-3b, depend (are variant) on the orientation of 

the axes x and y. Indeed, if changing the x-y orientation by an α angle, then σx, σy and τxy will 
change according to well-known equations from the textbooks: 

 

 

cos2 sin 2
2 2

x y x y

x xyα

σ σ σ σ
σ σ α τ α

+ −
→ = + + ,                          (2.1.1-1) 

π/ 2y x yα ασ σ σ σ σ+→ = + − ,                                            (2.1.1-2) 

, π/ 2 sin 2 cos2
2

x y

xy xyα α

σ σ
τ τ α τ α+

−
→ = − + .                           (2.1.1-3) 

 
 

In these equations, σx, σy and τxy are on an original (initial) cuboid with normal lines x 

and y; σα, σα+π/2 and τα,α+π/2 are on a cuboid with different orientation: turned (around z) at 

the α angle against the original cuboid; α is measured from x. In Eqs. 2.1.1-1 – 2.1.1-3, all 

the stresses are functions of t (the t argument in parentheses is considered as present 
although not written explicitly). 
 

 

2.1.2. Invariant loading differential (dσσσσ', dσσσσ", dττττ) 
  

Obviously, the principal cuboid with its principal stresses in the principal directions 
(principal axes, principal normal lines) should be used in some way. These stresses, cuboid 
and axes are invariant: they appear the same with any choice of the x-y orientation, i.e. they 

are independent of α.  

In the Bulgarian and other textbooks, the labels of the three principal stresses are σ1, 

σ2 and σ3 so that σ1 ≥ σ2 ≥ σ3. This rule is inconvenient to IDD since the two principal 
stresses will change their labels and axes under non-proportional loading. They will be now 

σ1 and σ2, now σ2 and σ3, now σ3 and σ1, now on the one principal axis, now on the other. 

Therefore, the labels σ' and σ" are preferred: the principal stresses bound constantly 

(without interchange) with their own principal axes which are correspondingly denoted as ' 

and " (Fig. 2.1.2-1c further below). 
There is a well-known equation for the principal stresses represented in the following 

form here: 

   
'

"
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σ
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
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' 2 2

x y x y
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σ σ σ σ σ
τ

σ

+ −  
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  
.                         (2.1.2-1) 

 

In fact, Eq. 2.1.2-1 represents two equations: the plus sign yields max{σ', σ"} and the minus 

sign gives min{σ', σ"}. However, it is not known whether max{σ', σ"} = σ' and min{σ', σ"} 

= σ" or vice  versa. That is why, the ‘or’ option is involved in Eqs. 2.1.2-1. This problem will 
be thoroughly analyzed later (Sections 2.4.4, 4.1.2 – 4.1.5). 

Another well-known equation gives the angle (α =) α0 at which the principal cuboid is 
found out (Fig. 2.1.2-1c): 
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0
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−
.                                                  (2.1.2-2)  

 

According to Eq. 2.1.2-2, α0 can vary between –45
0
 and +45

0
 and go through an ‘arctg 

jump’ by ±90
0
 when the denominator goes through 0. In Fig. 2.1.2-1c, the α0 angle is shown 

as α'. This does not mean α0 = α' always: at another time, the equalities α0 = α" = α' ± 90
0
 

may be valid. 

At first sight, it would be a good idea to replace the variant σx(t), σy(t) and τxy(t) with the 

invariant σ'(t) and σ"(t). This would entail replacing the variant 3D trajectory in the σx-σy-τxy 

coordinate space and ds in it (Fig. 1.1.3b) with the simpler invariant plane trajectory and 

plane ds. However, then the transformation of the three original oscillograms σx(t), σy(t) and 

τxy(t) into only two principal ones σ'(t) and σ"(t) will not be in reversible one-to-one 
correspondence (and will be analogous to the approach of reduction criticized in Chapter 1). 
The rotation of the principal axes and its influence on the fatigue life will be omitted. In this 
Section 2.1.2 in the thesis, it is proved that the influence in question is not negligible at all. 

That is why the following idea is advanced. Fig. 2.1.2-1а shows, at the previous time tp 

= t – dt, that cuboid (sp,0) which will be principal at the current t time and stays immovable 

during dt at the angle α0 valid for the t time. Hence, since the cuboid is non-principal, a shear 

stress τxy,0 acts on it together with normal stresses σx,0 and σy,0. This τxy,0 is infinitesimal since 

the cuboid (sp,0) is nearly principal. Fig. 2.1.2-1b shows the appearance of dσ', dσ" and dτ 

during dt which compose the invariant loading differential (ds) in physical meaning. By adding 

(ds) to (sp,0), the invariant (s) state of stress results (Fig. 2.1.2-1c), i.e. the same cuboid 

becomes already principal at the t time. Respectively, (ds) = (s) – (sp,0) i.e. dσ' = σ' – σx,0, dσ" 

= σ" – σy,0 and dτ = –τxy,0. 

The next loading differential (ds) from the time t to the time t + dt will look similar to Fig. 

2.1.2-1b but valid for another immovable cuboid with an infinitesimally different orientation: 

the α0 angle will be computed again from Eq. 2.1.2-2 but for the time t + dt. The new σx, σy 

and τxy at the time t + dt will come in the role of current stresses while those from the t time 
will take the part of previous stresses, and so on. 

Thus, consecutive invariant loading differentials are considered in the sense that lots of 

immovable cuboids at one and the same body’s point are observed at consecutive values of α0 

during consecutive time differentials dt. In fact, the continuous smooth function α0(t) 

(excluding arctg jump by ±90
0
) is replaced with a stepped one. 

Fig. 2.1.2-1. (а) The state of stress (sp,0) (at the previous time tp = t – dt) of the  

cuboid which will be principal at the current t time and is orientated at the angle α0(t); 

(b) the invariant stressing (loading) differential (ds); 

(c) the invariant (s) state of stress of the same cuboid already principal at the t time 
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Thanks to the idea described, a third component dτ = –τxy,0 of (ds) also appears in Fig. 

2.1.2-1b together with dσ' and dσ". This dτ is owing to, and namely takes into account, the 

rotation of the principal axes during dt. 
 

 

2.1.3. Geometrical form of the invariant loading differential ds 
 

The physical invariant loading differential (ds) introduced in the previous section is 
subject to geometrical interpretation represented below. The IDD method can be developed 
without this interpretation but only using equations relating to physical cuboids and the 
stresses on them. However, IDD is developed much more convenient and demonstrative by 
means of the interpretation below. 

It is based on the following statements. The stress transformation according to Eqs. 

2.1.1-1 – 2.1.1-3, including with α = α0, geometrically means the following: the point 

M(σx,σy,τxy) of the σx-σy-τxy trajectory (Fig. 1.1-3b) goes along a transforming ellipse (ellipse 

of transformation) shown in Fig. 2.1.3-1, and reaches the σx-σy coordinate plane that 

becomes σ'-σ" plane. Each such an ellipse is always parallel to the ξ-τxy plane where ξ is 
the bisector of the quadrants II and IV of opposite algebraic signs (Fig. 2.1.3-1). The major 

(big) axis of the ellipse is parallel to the ξ coordinate axis and the minor (small) ellipse’s axis 

is parallel to the τxy axis. The ratio between the ellipse’s axes (or half-axes) is always 2 . 

The center of the ellipse (0 point) is on the bisector η of the quadrants I and III of equal 
algebraic signs. 

The proof of these statements can be seen in this Section 2.1.3 in the thesis. 

Now, Fig. 2.1.3-1 is to be seen again. The determination of σ' and σ" by Eqs. 2.1.2-1 at 

the t time means that the current (new) end of the current variant element ds in the σx-σy-τxy 

space is brought to a contact with the plane σ'-σ" at the point M'(σ',σ",0) (or M" if 

interchanging σ' and σ" what will be additionally discussed in Sections 2.4.4 and 4.1.2 – 

4.1.5 as a large subject). And the determination of σx,0, σy,0 and τxy,0 by the Eqs. 2.1.1-1 – 
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2.1.1-3 at the time tp = t – dt means that the preceding end of the transformed and already 

invariant element ds is obtained: the point Mp,0(σx,0,σy,0,dτ). With that, the preceding Mp end 

goes along its similar transforming ellipse, replaced infinitesimally aside, to the point Mp,0. It 

remains at the infinitesimal distance dτ above (or below) the σ'-σ" plane. The so-transformed 

current element ds is already invariant of the choice of the original axes x and y. 

At the previous time tp = t – dt, the Mp point went along its ellipse (see the magnified 

fragment in Fig. 2.1.3-1) to the M'p point  in the role of a current invariant point in the σ'-σ" 

plane; the pre-previous variant point Mp,p followed Mp to the position Mp,p,0; and so on back in 

the time. Thus, the previous invariant dsp element is disconnected from the current ds 
element. That the consecutive invariant elements appeared disconnected is for they relate to 
differently orientated immovable cuboids which are principal for instants only. 

The so-built sequence of the invariant ds elements is denoted as (S) and is called 

invariant ‘trajectory’ (although it is torn in fragments) or trajectory in the σ'-σ"-dτ space. The 

length of (S), i.e. the sum (the integral) of the ds lengths, is S. The fragmentation of the 

invariant (S) trajectory is not disturbing (besides, it is to remind that the geometrical 
interpretation is not a must). There is nothing disturbing that the rotating principal cuboid 
should be ‘stopped for a little while’ to have the ds element appeared as invariant (together 

with appearance of dτ) what will later enable the determination of dD independently of the x-

y orientation. 

The component (projection) of any invariant ds element onto the σ'-σ" plane is labeled 

as dsxy (Fig. 2.1.3-1). All the dsxy elements form a trajectory (Sxy). Its length Sxy is the sum (the 

integral) of the dsxy lengths. The current dsxy element and the previous dsxy,p element are as 

connected as the infinitesimal projective vertical dτ segment through Mp,0 coincides with the 

transforming ellipse through Mp,0. For the previous dsp element, that ellipse brought Mp,0 into 

M'p with some deviation from the projection of Mp,0. This deviation is a negligible infinitesimal 

of second order. That is, σx,0 and σy,0 converge to the previous σ'p and σ"p of the preceding 

differentials dsp and dsxy,p: σx,0 → σ'p, σy,0 → σ"p. It turns out that the infinitesimal dsxy 
differentials are connected with the allowance of the second-order infinitesimal deviations. 
Respectively, the (Sxy) trajectory is a smooth curved line (or a straight one in particular). The 

same (Sxy) trajectory is directly presented by Eq. 2.1.2-1 without accounting the rotation of 
the principal axes. 

The d differentials will be replaced with finite ∆ differences (finite ∆ elements) and 

therefore σx,0 and σy,0 will visibly deviate from σ'p and σ"p. Nevertheless, the following 

(second) possibility for forming σx,0 and σy,0 is available: equalizing them directly to σ'p and 

σ"p. In other words, this is the possibility to neglect the finite smaller deviation of M'p from the 

projection of Mp,0. The current and the previous ∆sxy elements will be connected at M'p. Then, 

Eqs. 2.1.1-1 and 2.1.1-2 will not be used for computing σx,0 and σy,0. The other (already 

described above) first possibility is: σx,0 and σy,0 are computed by Eqs. 2.1.1-1 and 2.1.1-2. 

Then, the current and the previous ∆sxy elements appear disconnected due to the above-

mentioned deviation (which is always in the ξ direction). With both possibilities considered, 

τxy,0 = –∆τ is computed by using Eq. 2.1.1-3. 

Together with the trajectories (S) and (Sxy), it is also to introduce a ‘trajectory’ (Sτ) built 

of the dτ elements. Its length Sτ is the sum (the integral) of the dτ lengths. So, if the principal 

axes rotate, the ds elements disconnect from each other since their dτ components appear. 

In case the principal axes are immovable, the dτ elements disappear and the elements ds ≡ 

dsxy are connected. Then, they compose a continuous smooth trajectory (S) ≡ (Sxy) which 

entirely lies in the σ'-σ" plane. This means the loading differential is associated with one and 

the same permanently immovable principal cuboid. Of course, it is also possible that dτ = 0 

and ds ≡ dsxy not permanently but only in time intervals of immovability of the principal axes. 
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As a matter of fact, a special three-dimensional coordinate space σ'-σ"-dτ has been 

introduced in which the third dimension dτ is infinitesimal. Nevertheless, with the transition 

from the original three dimensions σx -σy-τxy to the new dimensions σ'-σ"-dτ, again three, no 
loading information is lost. This transition provides a reversible one-to-one correspondence: 
the original variant continuous trajectory can be restored from the invariant fragmented 
trajectory in a single-valued way. On the other hand, as the third dimension is infinitesimal, 
the invariant trajectory presentation is practically two-dimensional: the further analysis is 

actually two-dimensional. This is a significant convenience, also for computer visualization: 

the (Sxy) trajectory will only be displayed on the computer screen that represents the σ'-σ" 

plane, and, on a separate screen’s place, the corresponding ∆τ element will be displayed 

simultaneously with the appearance of every current ∆sxy element. 
Meanwhile, another index was also introduced in Fig. 2.1.3-1 and will be often used 

from now on: v for ‘variant’. Examples: the variant ds element is denoted additionally as dsv in 

order to be differed from the invariant ds element, the variant trajectory is denoted as (Sv), 

etc. In case the v index is surely understood, it can be skipped: for instance, in Fig. 2.1.3-1, 

M ≡ Mv, Mp ≡ Mp,v, Mp,p ≡ Mp,p,v, etc. 

In particular, if the original variant (Sv) trajectory coincides with a transforming ellipse, 

then the dτ elements only exist, i.e. ds ≡ dτ and (S) ≡ (Sτ). All the dτ elements gather onto one 

point M'(σ',σ",0) (or M"). This is the case of constant principal stresses in rotating principal 

directions (it is a kind of maximized case and will be thoroughly treated in Subchapter 2.6). 
 
 
 
 
 
 

2.1.4. Components of the loading differential. Basic IDD types of loading. 
Resolution of the loading differential 

 
Fig. 2.1.3-1 suggests resolution of the loading differential (ds) into three components in 

a way which is confirmed as expedient by the whole IDD experience so far. The resolution is 

‘zoomed in’ in Fig. 2.1.3-1: ds is resolved into a radial component dsr, a circumferential 

component dsc, and dτ. Actually, apart from dτ, dsxy is additionally resolved into dsr and dsc 
that are perpendicular to each other. Correspondingly, two other ‘trajectories’ are introduced: 
(Sr) of length Sr as a sum (integral) of the dsr elements, and (Sc) of length Sc as a sum 

(integral) of the dsc elements. Trajectory ratios tr = Sr/S, tc = Sc/S and tτ = Sτ/S are also 

introduced. Each of them is ≤ 1. 
Hence, the IDD method suggests three basic types of loading. 
First type: proportional loading (including uniaxial stressing and pure shear) with a 

trajectory (S) ≡ (Sr). It is called r-loading. Radial elements dsr exclusively appear and the 

ratio k = σ"(t)/σ'(t) remains constant. The elements ds ≡ dsr lie on a radial line (axis) s 

through the coordinate origin in the σ'-σ" plane (Fig. 2.1.3-1). Each element is at a distance s 

from the coordinate origin. Each proportional loading has its own k radial axis on which the 

trajectory (S) ≡ (Sr) oscillates. All the elements ds ≡ dsr are connected, all the elements dτ are 

zeros, tr = Sr/S is exact 1, and the principal axes are permanently immovable. The ratio tr = 

Sr/S may also be close to 1: the loading is nearly proportional. In case tr = Sr/S is exact 1, the 

proportional loading will also be emphatically called ‘pure’ r-loading.  
Second type: non-proportional loading with immovable principal directions and a 

trajectory (S) ≡ (Sc) that is on a circumference in the σ'-σ" plane. It is also called 

circumferential loading or c-loading. In laboratories, cruciform or thin-wall tubular specimens 
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can be exposed to such loading (see Section 1.4-7). As a simplest case, sinusoidal 900-out-

of-phase symmetrical σx(t) and σy(t) with equal amplitudes σx,a and σy,a can be produced. 
Then, a central (centrally located) circumference is described as a trajectory. This is the 
‘pure’ second type of loading with tc = Sc/S = 1. Otherwise, every non-proportional loading 

with immovable principal axes relates to the second type if tc = Sc/S is close to 1.  
Third type: non-proportional loading with constant principal stresses in rotating principal 

directions having (S) ≡ (Sτ). It is also called dτ- or ∆τ-loading. This type was revealed just 
thanks to the IDD point of view. So formulated, the third type had not been introduced before. 
However, it proves to be of first-rate importance now. It is a maximized case, a ‘touch stone’, 
an ‘acid test’ that could invalidate many of the fatigue life theories proposed (this will be 
discussed in Sections 2.6.2 – 2.6.5). Correspondingly, the question of how to implement in 

laboratories this loading in pure form with tτ = Sτ/S exact 1 was not treated as it deserves. 
Again from the IDD point of view, an answer to that question is found out (Section 2.6.2). 
Here it is to mention that the well-known experiments under cyclic out-of-phase bending and 
torsion, or pull-push and torsion (Section 1.4.5), may cause intensive rotation of the principal 

axes. Thus, a ratio tτ = Sτ/S relatively close to 1 could be achieved. 
This Section 2.1.4 in the thesis continues with several equations and illustrations in 

reference to the resolution of the (ds) loading differential, including in its physical meaning. 
 
  
 
 
 

 
2.2. Basic damage differentials and basic damage intensities 

 
Of course, while the stress state (sp) changes by a differential (ds), some damage 

differential dD is added to the cumulative damage DΣ(t – dt).  

How should dD be defined? In this Subchapter 2.2 in the thesis, it is grounded that so 
far the single possible option is to propose a phenomenological (empirical) IDD approach. 

Let the case (ds) ≡ (dsr) be considered first, i.e. a basic loading r-differential (Fig. 2.1.4-
3a in the thesis illustrates its physical meaning). The corresponding basic damage differential 

is dD ≡ dDr. The derivative Rr = dDr/dsr is introduced: basic damage intensity under r-

loading. It is some function of the principal stresses σ' and σ", i.e. it relates to a certain point 

in the σ'-σ" plane: Rr = Rr(σ',σ"). Then, basic damage differentials dDr = Rrdsr will be 
integrated.  

How to determine Rr(σ',σ")? The idea is simple: this damage intensity should satisfy 

given (input) S-N lines under cyclic r-loadings with different values of k = σ"(t)/σ'(t) = 

constant. IDD does not deal with the origin or composition of the input S-N lines. They are the 
most treated characteristics of fatigue life and for them there is a lot of accumulated 
experimental and theoretical experience (including for their accelerated determination: a 

respective study done is presented in Section 1.2.5 of Volume II). The input S-N lines can be 
both experimental and partly or entirely hypothetical. For their composition, any existing 
suitable and confirmed methods and criteria will be used, i.e. IDD incorporates them, 

actually. The very determination of Rr(σ',σ") based on the input S-N lines, i.e. the 
development of the above-mentioned simple idea, requires mathematical treatment that is 
not as simple. It is carried out in the next two Sections 2.3 and 2.4. 

Analogously, basic damage differentials dDc and dDτ per the basic loading differentials 

(dsc) and (dτ) (shown in physical meaning in Fig. 2.1.4-3b and Fig. 2.1.4-3c in the thesis) are 

introduced together with corresponding basic damage intensities Rc =  dDc/dsc = Rc(σ',σ") 

and Rτ = dDτ/dτ = Rτ(σ',σ"). Differentials dDc = Rcdsc and dDτ = Rτdτ will be integrated. 

By the way, since the damage is considered relative (a part of 1), i.e. dimensionless, 

then each R function has a dimension of [Pa
-1

]. 
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Similarly to the idea of determining Rr, Rc could be also determined in a way as to 

satisfy experimental or/and hypothetical fatigue life data under c-loadings (‘circumferential’ 
loadings). In the world, there is accumulated experimental and theoretical experience in 
fatigue life under non-proportional loadings with immovable principal axes. Such loadings are 
close to the circumferential type although they had not been considered in this way. Now, 
IDD emphasizes the necessity of doing such tests that trajectories are obtained oscillating on 

central circumferences in the σ'-σ" plane. Only then will more reliable data be available for 

determination of Rc. For the time being, Rc will be found in agreement with life data under 

loadings having trajectories in which differentials dsc dominate. Rc will be also considered in 

comparison to Rr. On this occasion, the empirical ratio fc = Rc/Rr will serve in the role of an 

(averaged) empirical factor of loading non-proportionality. In other words, fc = Rc/Rr will testify 
for the material’s sensitivity to non-proportionality of loading with immovable principal axes. 

With that, fc ≥ 1 is expected, i.e. Rc ≥ Rr, according to physical and other considerations that 
follow in this Subchapter 2.2 in the thesis. 

The third intensity Rτ is to be determined in a way as to satisfy life data under constant 

principal stresses acting onto rotating principal directions (pure dτ-loading). IDD reveals the 

importance of this dτ-loading and emphasizes the necessity of doing tests that provide 

trajectories in σx-σy-τxy coordinates oscillating on ellipses which transform σx(t), σy(t) and 

τxy(t) into σ' = constant and σ" = constant. Then, every loading differential is (ds) ≡ (dτ) and 

looks in physical meaning like shown in Fig. 2.1.4-3c in the thesis. The ratio fτ = Rτ/Rr is 
introduced in the role of an (averaged) second empirical factor of loading non-proportionality: 
of material’s sensitivity to principal axes rotation. In this Subchapter 2.2 in the thesis, 

expectation for Rτ ≥ Rr is grounded. 

The next, main question is: how are the basic dDr, dDc and dDτ combined (and 

changed) into a general damage differential dD in case dsr, dsc and dτ appear 

simultaneously as components of a mixed (general) loading differential ds? The development 
of this subject is carried out in Subchapter 2.7. 
 
 
 

2.3. Determination of R ≡≡≡≡ Rr and application of IDD to one value of k 
 
 

2.3.1. Determination of R(s) based on the Newton-Leibniz formula  
 

For shorter notation, the r index is omitted (but is implied) in this section: R(s) ≡ Rr(s) = 

dDr(s)/ds ≡ dD(s)/ds. 

The s argument of R(s) and D(s) is the distance from the coordinate origin to the 

oscillating M point at the t time. The s radial axis (Fig. 2.1.3-1) on which M oscillates is 

individually illustrated after taking it outside the σ'-σ" plane and is shown vertical (Fig. 1.2.1-

1а) just for convenience. Let the simplest, cyclic oscillation of M point between smin and smax 

(Fig. 1.2.1-1а) be available. The distance s as an argument of R(s) and as an operand will be 

treated in absolute value (always positive). Moreover, s will be later raised to a real power. 

The meaning of D with s argument is accumulated damage (accumulated differentials dD = 

Rds) during moving the M point from 0 to s. 

The derivative R and the primitive D with the s argument correspond to f and F with the 

x argument in the Newton-Leibniz theorem in Preview in the thesis. As noticed there, if xmin is 
constant, then 
 

max

min

max
max

max max

d d ( )
( )d 0 ( )

d d

x

x

F x
f x x f x x

x x
= − = ≡ .                        (2.3.1-2) 

In other words, if the integral is a function  of  its  upper  limit  xmax  and  is  differentiated  with 
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respect to it, then the integrand f(x) is obtained, and the upper limit xmax takes the part of the 

integrand’s argument x. Although this interpretation is well-known, it is worth reminding here, 
since no researcher had used it for obtaining the damage intensity as done below. 

Now, R(s) and D(s) come to replace f(x) and F(x) in Eq. 2.3.1-2. These R(s) and D(s) 

will be considered the same regardless of the location of s on either side from the coordinate 

origin (this postulation will be discussed in Section 2.3.7). While the point M is oscillating one 

cycle, it travels twice the distance between smin and smax. With that, the damage DT per one 

cycle is accumulated. Then, the integration of the differentials dD to DT is done according to 
the following understandable procedure (see Fig. 1.2.1-1а): 

 
max max min

min( ) 0 0

d 2 ( )d 2 ( )d ( )d

s s s

T

S s

D D R s s R s s R s s
 

= = = ± 
  

    .                  (2.3.1-3) 

 

The plus sign is valid when the peaks smin and smax are on both sides of zero; otherwise, the 

minus sign is valid. The indices min and max are assigned to smin and smax in a way that smin < 

smax in absolute values (the smax peak is farther from zero than the smin peak). 

R(s) is expected to be an exponential function steeply growing with increasing s. 
Therefore, the second integral in the brackets in Eq. 2.3.1-3 can be neglected at first stage. 
On the other hand, according to the linear hypothesis (Section 1.3.1), DT = 1/N(smax) where 

the function N(smax) is represents by an S-N line. Hence, 
 

max

max 0

1
( )d

2 ( )

s

R s s
N s

=  .                                          (2.3.1-4) 

 
Thus, a remarkable possibility is available for application of the Newton-Leibniz theorem for 
obtaining the integrand similarly to Eq. 2.3.1-2: both sides of Eq. 2.3.1-4 are differentiated 

with respect to the upper variable limit smax and R is obtained with the argument smax ≡ s: 
 

max max

d 1
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R s
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 
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.                                         (2.3.1-5) 

 

Next step is to introduce the analytical expression of the function N(smax), i.e. of the S-N 

line, to be differentiated with respect to smax ≡ s. In Section 1.2.1, Eq. 1.2.1-1 of the S-N line 

for smax > sl was indicated as the most popular. Thus, 
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By differentiating the last expression and according to Eq. 2.3.1-5, R(s) is obtained: 
 

1

( )
2

m
ms

R s
A

−

= .                                                   (2.3.1-7) 

 

This equation is valid for s > sl in case the fatigue limit sl is entered. For s < sl, R is supposed 
to be zero but this will be additionally discussed later (Section 2.3.3). 

It is to notice that IDD uses an S-N line as smax-N diagram whereas CCA uses an S-N 

line as sa-N diagram.  
 
 

2.3.2. The functions R(s) and D(s) containing i
* 
divisor 

 

If checking out Eq. 2.3.1-7 with an actual slope, e.g. with m = 10, it  becomes  apparent 
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that R(s) really grows steeply with increasing s. Nevertheless, the error admitted above for 

neglecting the integral between the limits 0 and smin can be compensated. For this purpose, a 

constant divisor denoted as i
*
 is put at the place of 2 in Eq. 2.3.1-7: 

 
1

*
( )

m
ms

R s
i A

−

= .                                                    (2.3.2-1) 

 
For determination of i

*
, Eq. 2.3.2-1 is to be substituted in Eq. 2.3.1-3 without neglecting the 

second integral in the brackets now. As well, DT = 1/N(smax) is substituted. The following is 
obtained: 

max min1 1

min
max* * *

max max0 0

1 2
2 d d 1

( )

ms sm m
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s s s
N s i A i A i A s

− −     
= ± = ±    

       
  .          (2.3.2-2) 

 

This operation is actually IDD reproduction of the input (given) S-N line represented by the 

third of the Eqs. 2.3.1-6, after the R function is determined from the same S-N line according 

to Eq. 2.3.2-1. By equalizing the reproduced function N(smax) to the input one, i.e. by 
equalizing the last term of Eq. 2.3.2-2 to the right side of the third of the Eqs. 2.3.1-6, and 
meanwhile canceling out, the following is obtained: 
  

* min

max

2 1

m

s
i

s

  
= ±  

   

.                                               (2.3.2-3) 

 
The sign plus or minus appears according to the same rule that related to Eq. 2.3.1-3. 

Eq. 2.3.2-3 really yields i
*
 as a constant if the S-N line is valid for R = smin/smax = 

constant. Then, thanks to i
*
 from Eq. 2.3.2-3, IDD exactly reproduces such an input S-N line. 

For pulsating loading cycle (smin = 0 = R), Eq. 2.3.2-3 yields exact 2 for i
*
. For alternating 

(reversed) loading cycle (smin = smax, sm = 0), i
*
 is exact 4. 

If the S-N line is valid not for R = constant but for sm = constant ≠ 0 which is the case 

mostly met, then the stress ratio R = smin/smax varies along the whole S-N line. 

Correspondingly, Eq. 2.3.2-3 will give different values of i
*
 for exact reproducing individual N 

abscissae of the S-N line. If one and the same i
*
 = constant is used, the whole S-N line will 

not be reproduced perfectly.       
It will be shown later (Section 2.3.6) that i

*
 = constant can always be taken within the 

interval 4 ≥ i
*
 ≥ 2 and this will provide enough accuracy, practically. Moreover, nearly for 

every non-zero sm, the input S-N line will be reproduced precisely enough with i
*
 = 2. 

Anyway, the problem of satisfactory reproduction of an input S-N line is solved. The final 

expression of the R function is Eq. 2.3.2-1. 

The primitive D(s) of R(s), i.e. the function obtained by integration of Eq. 2.3.2-1, is 
 

*
( )

m
s

D s
i A

= .                                                                 (2.3.2-4) 

 

Both Eq. 2.3.2-1 and Eq. 2.3.2-4 is valid for s > sl in case a fatigue limit sl is entered. For s < 

sl, R(s) and D(s) are supposed to be zeros but this will be additionally analyzed in the next 
section. 

Let Eq. 2.3.2-4 be compared to the third of the Eqs. 2.3.1-6 that represent the S-N line. 

It is seen that D(s) is the function 1/N(s ≡ smax) which can be called ‘reciprocal Wöhler 

function’ divided by i
*
: D(s) = 1/[i

*
N(s)]. Thus, 1/N(s ≡ smax) represents D(s) proportionally 

through the constant i
*
 divisor. This would be also valid for any different S-N line equation 

which another IDD follower would prefer instead of Eq. 2.3.1-6. Of course, if Eq. 2.3.1-6 is 
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not used, then Eq. 2.3.2-3 for i
*
 will be different (but again there will be i

*
 = 4 if sm = 0 and i

*
 

= 2 under pulsating loading).  
 

 
 

2.3.3. S-N, S-R and S-D lines.  
‘Breaking’ (impulse) mode and ‘smooth’ mode 

 

Now, example graphs of the functions N(s) (the S-N line), R(s) and D(s) according to 
Eqs. 2.3.1-6, 2.3.2-1 and 2.3.2-4 can be illustrated all together. They are figuratively 
overlapped in Fig. 2.3.3-1 (which is in addition to Fig. 1.2.1-1b). The vertical coordinate axis, 
along which the trajectory oscillates, plays now the role of the abscissa axis while the 

horizontal coordinate axis takes the ordinates of the three functions. These three lines, S-N, 
S-R and S-D, are straight in double-logarithmic coordinates. 

As mentioned more than once above, necessary specifications relating to the 
conditions s > sl and s < sl are to be introduced.  What exactly happens at s = sl? Then, the S-

N line abruptly breaks (refracts) to a horizontal and N → ∞ (Fig. 2.3.3-1b). With the S-D line, 

a sudden jump occurs from D = 0 to D(sl) = 1/(i
*
Nl) = sl

m
/(i

*
A). With the derivative S-R, this 

means an instantaneous infinite impulse. Upon integrating that impulse on a single 

infinitesimal element ds at sl, the finite value D(sl) = 1/[i
*
N(sl)] ≡ 1/(i

*
Nl) results. It is a 

sudden addend to the damage. Practically, the impulse will be finite and will cause the same 

addend but per a finite ∆s element. 

It turns out that as soon as the oscillating M point crosses the sl level, 1/(i
*
Nl) should 

be added to the damage accumulated to that time. If the addend 1/(i
*
Nl), correspondingly the 

impulse R(sl), is skipped during the computation, then the (output) S-N line reproduced by 

IDD will deviate from the input straight S-N line. A smooth bend to the horizontal asymptote 

at sl will occur (Fig. 2.3.3-1). Hence, for exact reproduction of an input S-N line which breaks 

in two at sl, the addend D(sl) = 1/(i
*
Nl) should be included at each crossing the sl level.  

Such an option is called breaking mode or impulse mode and is provided in the IDD 
software for users who want to use a breaking S-N line. The author is skeptic about setting 

discontinuity as a jump in D[s(t)], respectively in DΣ(t). More strictly the rule should be 
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s3 
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smax 

R t 

T 
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sr 

s 
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sl 
su 

Fig. 2.3.3-1. A cyclic oscillation (a), and  

S-N, S-R and S-D lines (b) as an example 
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followed that physical functions are continuous on principle. Then, finite jumps should not be 
admitted in primitives, and, moreover, infinite jumps (impulses) should not be admitted in 

their derivatives. The impulse R(sl) → ∞ is another IDD ‘discovery’. It does not advocate the 

idealization of breaking S-N line. The opponents of the impulse mode would prefer a less 
jumping idealization as follows.  

A kind of new limit sr < sl is introduced (Fig. 2.3.3-1). It is a border between areas of 

R(s) > 0 and R(s) = 0. The non-zero R(s) is determined by Eq. 2.3.2-1 for s > sr, whereas R(s) 

is zero for s ≤ sr. There will be no impulse R(sr). An input S-N line is first extrapolated below sl 

to sr and is called input R-prototype. A conditional number of cycles Nr corresponds to sr 

(illustrated in Fig. 1.2.1-1b). Thus, while doing IDD reproduction of N(smax), a smoothed 

output S-N line results. It follows quite close the straight input prototype to some su level and 

then bends to a horizontal asymptote at sr (Fig. 2.3.3-1b). 
Hence, the option is given to the IDD user to select the breaking mode or the smooth 

mode. In both cases, a straight line is entered in logsmax-logN coordinates and is called R-

prototype. Its equation is smax
m
N = A. If the breaking mode is selected, Nl (respectively sl) will 

be entered. Then, the given S-N line will be reproduced as coinciding with the input R-

prototype and breaking in two. If the smooth mode is selected, Nr (respectively sr) will be 

entered. Then, the given S-N line will be reproduced (more realistically) as smoothly bending 
(its equation will be presented in the next section). If the IDD user does not want at all to 
have any distinct interval of no damage round the coordinate origin of the s axis, then Nl or Nr 

will be entered as sufficiently great (respectively, sl or sr will be sufficiently low).     
 

 
 

2.3.4. Numerical examples. Equation of ‘bending’ (smooth) S-N line 
 

Demonstratively, with concrete numerical data, the N life of the oscillation in Fig. 2.3.3-

1a is reproduced by IDD in this Section 2.3.4 in the thesis. DΣ,T = Σ∆D = ΣR(s)∆s and then N 

= 1/DΣ,T is calculated. It proves that the N life from the S-N line is reproduced very well in 

breaking mode even if the ∆s elements are comparatively big. Then the reproduction of a 

smoothed S-N line is demonstrated and its equation is: 
 

 (smax
m 

– sr
m
)N = A.                                               (2.3.4-5) 

 
Eq. 2.3.4-5 is able to describe a bending S-N line (also apart from IDD) and agree with 

the scattered experimental points better than the classic equation smax
m
N = A with breaking in 

two. The IDD user will prefer the smooth mode in case the input S-N line is formed namely 

as bending. Such an S-N line will be put in agreement with Eq. 2.3.4-5 and thus the 

parameters m and A of the input prototype’s equation smax
m
N = A will be obtained.   

 
 
 

2.3.5. The opportunity for fatigue life computation without cycle counting,  
in impulse ‘peak’ and ‘range’ mode, and in smooth mode 

 

The same R intensity (Eq. 2.3.2-1), through which input lives are reproduced under 

cyclic proportional oscillations with different smax values, may also be used directly for life 

prediction under non-cyclic proportional loading according to DΣ,T = ΣR(s)∆s and N = 1/DΣ,T. 

In other words, an input S-N line that CCA uses through the Miner rule will also be used now, 

however directly, without any preliminary looking for cycles and counting them. 
 
 
 



http://www.freewebs.com/fatigue-life-integral/ 43

There is a main algorithm of the IDD software named Ellipse (the name is for often 
involved elliptical mathematical expressions). This algorithm is for the general loading and 

does not differ whether the stressing is proportional or not. Ellipse performs N = 1/Σ∆D 

where Rr, Rc, Rτ, ∆sr, ∆sc and ∆τ are all together included in the expression of ∆D in a way 
discussed further on (Subchapter 2.7). 

But particularly under r-loading, the simplification Rc = Rτ = ∆sc = ∆τ = 0 is available. It 

enables the other simplification: the possibility to use the primitive D ≡ Dr function and the 

Newton-Leibniz equation instead of the derivative R ≡ Rr. Then, the computational 

procedures with the elements ∆s ≡ ∆sr are not needed. This opportunity is analyzed further in 
the same Section 2.3.5 in the thesis. It proves that the impulse mode can be ‘peak impulse 
mode’ or ‘range impulse mode’. The difference between these two impulse mode versions is 
insignificant. Anyway, it is again confirmed that the smooth mode is to be preferred.   

After demonstrating simple examples of composition of DΣ(t), an algorithm for impulse 
and smooth damage accumulation emerges. It was developed for practical application under 
any single oscillogram and was named Integral. It is much simpler than Ellipse. The Integral 
development is taken out to Chapter 3.  

 
 

2.3.6. An example for the values of the i
* 
divisor with sm ≠≠≠≠ 0 

and for the possibility to directly set i
*
 = 2 

 
In continuation of Section 2.3.2 it is to verify the statement there which, in other words, 

says: the N abscissae of an input S-N line versus smax ordinates at one and the same sm ≠ 0 

will be reproduced as approximate, but exact enough, if directly setting one and the same i
*
 

= 2 in case sm is comparatively far from zero; and if sm is too close to zero, then one and the 

same (averaged) i
*
 value will be calculated within the interval 4 ≥ i

*
 ≥ 2. Below in this Section 

2.3.6 in the thesis, calculations of i
*
 follow providing reproduction of five input example S-N 

lines with different sm ≠ 0 values. 

Based on the example considered, a rule is to be stated that if the ratio sm/sl exceeds at 

least 0,11, then i
*
 = 2 can be directly set. Otherwise i

*
 should be calculated and averaged 

between 2 and 4, and hence the reproduction error factor can be reduced close enough to 1. 
The demonstrated manual calculations (using a calculator) are not the practical manner 

of evaluating and setting i
*
. Instead, the very software Ellipse or Integral will be used: by 

means of it, it is always possible to check how precisely input lives are reproduced with the 

selected value of i
*
. 

 
 

2.4. Determination of Rr in the whole σσσσ'-σσσσ" plane. 
Concomitant issues 

 
 

2.4.1. Introducing lines of equal lives 
 
In the Ellipse algorithm, at least two Rr-prototypes are entered under cyclic r-loadings 

for two radial lines in the σ'-σ" plane (Fig. 2.4.1-1). For example, the lines with k = σ"/σ' = 0 

of uniaxial stress state and k = σ"/σ' = –1 of pure shear will often be involved. In Fig. 2.4.1-1, 

two radial lines are shown with values ki and ki+1 of the ratio k = σ"/σ'. The i index is 

introduced since Ellipse can accept more than two Rr-prototypes for radial lines: up to n ≤ 9 

in number. This is more than enough for the practical application of IDD.  

As already known, the R function at each point of any radial line is determined 

according to Eq. 2.3.2-1. The latter takes now the form Rr(si ≡ smax,i) = i 1

i max,i

m
m s

−
/(i

*
Ai) where mi 

and Ai are the parameters of the input Rr,i prototype having the equation i

max,i i i

m
s N A= . 
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Instead of the Ai parameter, it is more convenient to enter the smax,i ordinate and the Ni 

abscissa of a point through which the prototype passes as an S-N line having the mi slope. 
Such a point will shortly be called ‘through-point’. It is also more convenient to exchange 

smax,i with σ'max,i accompanied by the corresponding ki. After all, the parameters of an input 

prototype are σ'max,i, Ni, mi and ki. To avoid writing the i index at each of the parameters, the 

contents of the Rr,i prototype will be simpler denoted so: (σ'max, N, m, k)i.  

In Fig. 2.4.1-1, a trajectory is shown as a segment of the radial ki line. It is a cyclic 

oscillation between smin,i and smax,i and its life is N cycles. Let a second segment of the radial 

ki+1 line represent another cyclic oscillation having the same N life. And, on the radial k line, 

let a third oscillation have the same N life. The k value is in the interval between ki and ki+1 in 
Fig. 2.4.1-1 but otherwise it may be out of this interval, especially if only two input prototypes 

are entered. The peaks of the three oscillations, where the oscillating points Mi, M and Mi+1 

are put, lie on the same line of equal N life under r-loadings. Its label is lN ≡ lN,r. 

The places of the peaks Mi and Mi+1 (Fig.  2.4.1-1) for any N are determinable from the 

input prototypes Rr,i ≡ (σ'max, N, m, k)i and Rr,i+1 ≡ (σ'max, N, m, k)i+1. If the line of equal life 

through the points Mi 

and Mi+1 is described 
mathematically, then the 
place of M will be 
determined as a point of 

intersection of lN and 

the radial k line. This will 
result in a mathematical 
expression for 
determination of N for 

smax and k. That 
expression will 
represent the function 
N(smax) (with k 
parameter). And, as 
already known from 
Section 2.3.2, from 
differentiation of 

1/[i
*
N(smax)] the 

intensity Rr(s ≡ smax) will 

be obtained at any k 

now, i.e. in the whole σ'-

σ" plane.  
 
 

 
 
 
 

2.4.2. Taking static stresses (or R stress ratios) into consideration 
 
Before developing the above idea of deriving N(smax) from the lines of equal lives at any 

k, the next concomitant question should be answered. What relation should bind the mean 

(static) stresses of the straight-line segment trajectories in Fig. 2.4.1-1? Correspondingly, for 

what σ'm,i should each input Rr,i prototype be valid according to the static stresses σx,m, σy,m 

and τxy,m of the input oscillograms σx(t), σy(t) and τxy(t)? 
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Since referring to static stresses, the classic approach of reduction of σx,m, σy,m and 

τxy,m to an equivalent static stress σequ,m is acceptable. For this purpose, some of the classic 
or recent criteria can be used. An author’s criterion is also proposed in this Section 2.4.2 in 

the thesis. After each input Rr,i prototype at k ≡ ki receives its σ'm ≡ σ'm,i in agreement with 

σequ,m, next step is agreeing the  prototype’s parameters σ'max,i, Ni and mi with σ'm,i. And after 
that, the prototype is ready for entering in the IDD software.    

In a summary: the input Rr,i prototypes should relate to lives of straight-line segment 

trajectories with the same σequ,m of the trajectory subjected to life computation. If the input 

oscillograms (the ‘current’ input data) σx(t), σy(t) and τxy(t) are pulsating (R = 0), then the 

input prototypes should also be valid for R = 0. 
 
 

 
2.4.4. Exchanging the values of the principal stresses (switching over the  

signs ±±±±). First, second and third condition 
 

It is to recollect from Section 2.1.2 the following. The α' angle always determines the 

instantaneous position of the ' principal axis and α" is always the angle of the " principal axis. 

The principal stresses σ' and σ" are always and correspondingly bound with the principal 

axes ' and ". At any t time, the principal stresses can be computed from Eqs. 2.1.2-1 but it is 

not known which is σ' and which is σ". They cannot be recognized, either, by the α0 angle 
from Eq. 2.1.2-2. 

Then, the following question arises: how to correctly recognize σ' and σ" in the 

connection with their own axes ' and " in order not to admit their wrong exchange 

(interchange)? Otherwise, incorrect discontinuities (jumps) of α'(t), σ'(t) and σ"(t) may occur. 

Correspondingly, the invariant (Sxy) trajectory will be torn: its next part will be suddenly 

carried out from e.g. the M' point to the distant M" point (Fig. 2.1.3-1).  

The equation of α'(t) (or α"(t)) is is involved: 

 
'( ) ( )

'( ) arctg
( )

x

xy

t t
t

t

σ σ
α

τ

−
=             

"( ) ( )
   "( ) arctg

( )
or x

xy

t t
t

t

σ σ
α

τ

 −
=  

 
          (2.4.4-1) 

 
where σ'(t) and σ"(t) are computed first from Eqs. 2.1.2-1. The so-called first condition for 

switchover (of the ± signs) is formulated: σ' ≥ σ" if τxy ≥ 0 and σ' ≤ σ" if τxy < 0. If M(σx,σy,τxy) 

is out of the η-τxy plane, a second condition applies: the variant point M(σx,σy,τxy) (Fig. 2.1.3-

1) goes into that of the two points M'(σ',σ",0) and M"(σ",σ',0) which is closer. This condition 

prevails upon the first one and may disable it by causing a new switchover. 
The second condition makes the variant trajectory ‘attract’ the invariant trajectory to ‘its 

own’ side from the η-τxy plane. The so-‘attracted’ invariant trajectory may pass over to the 

other side of the η axis without bouncing off it but crossing it naturally. However, whether the 
invariant trajectory will be ‘allowed’ to pass over to the other side or not, the following third 

condition determines: no discontinuity of α'(t) must occur in the order of ±90
0
. If such a 

discontinuity is found out after the first and second condition, then the third condition will 
produce a (new) switchover.  

This idea of an ‘angular’ third condition for switchover is developed in Section 4.1.3 in 
the thesis. There are too many details to be elaborated. They mostly relate to how much 
close to each other the points of the variant trajectory are, especially in the immediate 

proximity to the η axis. The α'(t) angle has its own finite change from point to point and this 

change can be great especially if the points are very close to the η axis. In order to recognize 

if such a change is indeed ‘its own’ i.e. not commingled with a ‘wrong jump by ±90
0
’, certain 

additional conditions should be observed. As well, the possible interference of the arctg-jump 
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by ±180
0
 should be taken into account. By solving the problem of the correct switchover 

controlled by α'(t) according to the third angular condition, the very problem of determination 

of the α'(t) function is solved, in fact. 

The very α'(t) function, except for its possible role to control the switchover according 
to the third condition, is not directly needed for IDD at this stage. Therefore, eventually, 
another controlling third condition has been preferred. It will be presented later (in Section 
4.1.4 in the thesis). There will be other more considerations involved in terms of the 
continuity of the participating functions, the rotation of the principal axes, and a necessity of 
specific dividing the current variant element into two sub-elements (Section 4.1.5). That is all 
a large and complicated subject which engaged much time and effort for the correct 

mathematical solution, algorithmization and programming in Ellipse. Corresponding 

differential analysis was done as an essential IDD part that belongs, on principle, to Chapter 
2. But for the bulky mathematical and algorithmic details, the subject in question was carried 
out to Chapter 4.    

 
 

 
 

2.4.6. Composition of the lines of equal lives 
 

The segment MiMMi+1 (Fig. 2.4.1-1) was postulated to be an arc of a central ellipse 

having axes vi and ui. The vi axis deviates from η at an angle ψi. In Ellipse, input ψi angles 

between –45
0 

and 45
0 

are entered. A positive ψi is accepted clockwise as shown in Fig. 

2.4.1-1. The input prototypes follow each other also ‘clockwise’ at ki from 1 to –1, and 

therefore ki+1 < ki in algebraic values. In other words, the prototypes are entered from up to 

down; 2
 ≤ n ≤ 9 or, what is the same, 1

 
< n < 10. An example: n = 3, k1 = 1 (biaxial equal 

stressing with σ' = σ"), k2 = 0 (uniaxial stressing with σ' while σ" = 0), and k3 = –1 (pure 

shear, σ' = –σ"). 

Thanks to the ψi angle, the segment MiMMi+1 is more flexible. It is able to be as 
convex (curving outwards from the coordinate origin) as desired, or its convexity can 
decrease so that it may practically turn into a straight-line segment. Thereafter, transition to 
concavity (curving inwards to the coordinate origin) would occur. That is, for certain values of 

ψi and at certain places of the points Mi and Mi+1 no ellipse could pass through them but a 

hyperbola having the axes vi and ui. Thus, the sought equation of an ellipse would turn into 

an equation of a hyperbola.      
Concavity of a line of equal life does not correspond to any theoretical criterion. 

Moreover, in contrast to an ellipse as a geometrically closed figure, a hyperbola can go to 

infinity. This would block the Ellipse algorithm. Therefore, a subprogram is included that 

examines ψi, ki, ki+1 and the other parameters of the input Rr,i and Rr,i+1 prototypes for 

possible appearance of a hyperbola (Section 4.1.8). If the MiMi+1 segment should be 

hyperbolic instead of elliptical, the subprogram will alarm and suggest to the user intervals for 

different ψi values that ensure an ellipse. 

In this connection, the following remark is appropriate. When finding out published 

experimental S-N lines at different ki values, their authors usually drew each line for itself 

through the scattered experimental points. For this purpose, some statistical way was used, 
usually based on the minimum-square method. And any observing lines of equal lives i.e. 

any observing mutual relations of the S-N lines at different ki values was usually not done. 

Thus, too different mi slopes are often obtained what results in appearance of somewhat 

‘strange’, ‘zigzagging’ lines of equal lives. 

Whenever Ellipse alarms, though, for hyperbolas, it is always due to ‘strange’ input 

prototypes. Even then, by means of relevant changes of ψi or/and n (entering also 

intermediate prototypes if necessary), again a fully satisfactory agreement with experimental 

data is achieved. With adding ψi, the parameters of an input prototype become 5: (σ'max, N, 
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m, k, ψ)i. Only the last prototype entered for the last kn radial line will miss the parameter ψi ≡ 

ψn since no next radial kn+1 line is involved. 
Next details relating to this Section 2.4.7, in view of their mathematical and algorithmic 

difficulty, are carried out to Subchapter 4.1. 
 
 

2.4.7. Determination of N(s ≡≡≡≡ smax) and Rr(s) at any k 
 

Now, the mathematical solution of the problem of deriving N(s ≡ smax) and Rr(s) from 

the lines of equal lives can be presented in an initial outline. The equation of the ellipse to 

which the MiMMi+1 segment belongs is used. As well, the angles θi, θ and θi+1 shown in Fig. 

2.4.1-1 are involved. After series of complicated deductions (Section 4.1.7), the following 
equation is obtained: 

 i i 1

2 2

2
0

m m
aN bN s+ −+ − = .                                              (2.4.7-1) 

 
Large mathematical expressions indicated as a and b (Section 4.1.7) participate here. The 

parameters of the ith and i+1st prototype are included in a and b, as well as k = σ"/σ' of the 

radial line on which the point M ≡ M(σ',σ") instantaneously falls; s is the distance OM to the 
coordinate origin: 
 

2 2 2' " ' 1s kσ σ σ= + = + .                                         (2.4.7-2) 
 

 

Meanwhile it is to remind that, according to the Newton-Leibniz theorem, s is treated as 

s ≡ smax (as well as σ' ≡ σ'max). Thus, Eq. 2.4.7-1 represents the sought N(smax) function 

containing the k parameter. It is also to recollect (from Sections 2.3.1 and 2.3.2) that R(s ≡ 

smax) will be derived by differentiation of 1/[i
*
N(s ≡ smax)] with respect to smax at constant k. By 

the way, since k = constant, a and b in Eq. 2.4.7-1 also participate as constants in the 

differentiation. 

Eq. 2.4.7-1 is not directly solved for N and therefore N(s ≡ smax) is an implicit function. 
Hence, the differentiation will be implicit. For this purpose, Eq. 2.4.7-1 is first represented in 
the following form: 
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Next, the implicit differentiation follows, with respect to smax through 1/N: 
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Here, d(1/N)/dsmax is substituted with i

*
R(s ≡ smax) and the Rr function is obtained: 
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This equation needs substitution of the numerical N value which has to be preliminary 

computed from Eq. 2.4.7-3 for the corresponding value of s ≡ smax. As already stated above, 

Eq. 2.4.7-3 is not directly solved for N. Therefore, a sub-algorithm in Ellipse has been 
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created for solution by two numerical methods of successive approximations. The final 
solution is reached quickly (for example, in 5 or 6 approximations only). 

The mathematical and algorithmic details relating to this Section 2.4.7 are also carried 
out to Subchapter 4.1.  

 
 

2.4.8. Initial description of procedures in the Ellipse algorithm 

 
The computation according to Eq. 2.4.7-3 (in successive approximations) and Eq. 

2.4.7-5 repeated for a great number of trajectory’s points (from tens to millions of them) is 
immense. However, the contemporary computers perform it for insignificant time. 

In this Section 2.4.8 in the thesis, a summary is presented clearing the sequence of the 

computational procedures in the Ellipse algorithm in the general loading case. Further details 

are treated in Section 2.7.7, Subchapter 4.1 and further on. 
 
 
 

2.5. The Rc damage intensity in the whole σσσσ'-σσσσ" plane.  
Concomitant issues 

 
 

2.5.2. Introducing Rc-prototypes compared to Rr-prototypes 
 
After all, the following was only possible to create at the present stage of the IDD 

development: the Rc function is set in the same way like the Rr function by means of 

(conditional) input Rc prototypes (σ'max, N, m, k, ψ)i (i = 1, 2, …, n).  
These prototypes will be determined by adaptation so that they should agree with given 

(experimental or hypothetical) lives under non-proportional loadings with immovable principal 

axes and with trajectory ratios tc = Sc/S close to 1. The Rc prototypes are entered for the same 

values of ki and are of the same n number like the Rr prototypes. And setting fc = Rc/Rr = 

constant in the whole σ'-σ" plane will mean that each input Rc prototype will have the same 

parameters which the corresponding Rr prototype has, with the exception of the N parameter: 

it will be fc times as low. 

In this Section 2.5.2 in the thesis, analysis is done which shows that every Rc-prototype 

at ki is expected to be replaced downwards from the corresponding Rr-prototype. 
 

  
 

2.6. The Rττττ damage intensity in the whole σσσσ'-σσσσ" plane.  
Concomitant issues 

 
 

2.6.1. The pure dττττ-loading. The rotating disk of Findley et al. 

 

The pure dτ-loading (a ‘discovery’ of IDD at ds ≡ dτ), when the principal stresses 
remain constant while the principal axes rotate, should have been noticed, discussed and 

written down into the chronic of the fatigue strength studies long ago. Respectively, it should 

have been established long ago as one of the basic laboratory tests in the role of a ‘touch 

stone’ (an ‘acid test’) for examining the fatigue life criteria proposed. 
Many quantities introduced in Strength of Materials such like equivalent stress, strain 

energy, and others, expressed by the principal stresses, remain also constants, altogether 
and simultaneously. Hence, if fatigue life criteria are created based on variation of these 
quantities, such criteria will be all canceled since no variation is available. 

In 1960, Findley et al. published the following experiment: compressing a rotating disk 

by two constant forces P with a common line of action through the disk’s center (Fig. 2.6.1-1 

in the thesis followed by remarks). This is the single known case of implementing dτ-loading. 
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2.6.4. Introducing Rττττ-prototypes compared to the Rr-prototypes 
 

Again due to the lack of experimental (and even hypothetical) data from which Rτ could 

be derived, the S-N approach is accepted again to Rτ as it was applied to Rc. In other words, 

again conditional input prototypes (σ'max ≡ σ', N, m, k, ψ)i (i = 1, 2, …, n) are introduced in the 

form of ‘S-N lines’ called Rτ prototypes now. They are analogous to the Rr and Rc prototypes 

and are valid for the same radial ki lines. The Rτ intensity will be again computed according 

to Eqs. 2.4.7-3 – 2.4.7-5. It will be studied in comparison to the Rr intensity by involving the 

factor fτ = Rτ/Rr. 
According to the IDD experience so far and according to the physical and other 

considerations, Rτ ≥ Rr is expected at a given ki value. Correspondingly, the Rτ prototype is 

expected to be located below the Rr prototype. Analogously to the Rc prototypes, a 

conditional ‘extrapolated number of cycles’ Nex ≡ Nex,τ ≡ Nτ is introduced; Nτ ≥ Nr is expected.  
 
 

2.6.5. The pure dττττ-loading as maximized case 
and other cases of ‘weaker’ loading 

2.6.6. Comparative fatigue life assessments in the cases considered  
(not in favor of the critical plane concept) 

 
These two sections in the thesis will be read with a great interest by every researcher 

who has created some fatigue life criterion based on the concept of one critical plane. Due to 
the restricted volume of this Author’s Summary, abstracts are spared here.  

 
 
 

2.7. The damage differential dD in the general case  
of combined loading. Versions of the IDD method 

 
 

2.7.1. Searching for an empirical formula for dD 
 

In the general case of mixed (combined) loading, all the three components dsr, dsc and 

dτ of the ds loading differential appear simultaneously. If dsr, dsc and dτ appeared separately, 

the corresponding basic damage differentials dDr = Rrdsr, dDc = Rcdsc and dDτ = Rτdτ would 

be produced. Now, the key question arises: how to formulate the damage differential dD per 

ds? An empirical answer to this question will be sought as already grounded in Subchapter 

2.2 in the thesis. The S-N approach will be followed and the dD differential will remain as a 

relative fatigue damage differential without any concrete physical sense. Any remark about 

the lack of such sense would belittle not the present IDD method but the S-N approach in 

general which involves fatigue damage summation. All the cycle counting methods would 

actually be belittled together with the mass-scale used Miner rule: in it, the damage DT = 1/N 

per a cycle does not have any physical meaning, either. 
Thus, for now IDD is developed within the frames of empirical systematization and tries 

to enable the S-N approach at its ‘weak point’: under the general non-cyclic, multiaxial and 

non-proportional loading. The empirical S-N approach is brought up now to the most covering 

level that is integral both in its mathematical meaning and in the meaning of encompassing 
any sorts of loading. Of course, the various possible physical considerations for treatment the 
fatigue are not neglected in the thesis but, just the contrary, they are used. 

 
2.7.3. The generalization using three damage intensities 

 

After the previous PhD thesis, the decision was taken that, anyway, the method is 

subject to next development and improvement, and preferably in the σ'-σ"-dτ coordinate sys- 
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 tem. In this Section 2.7.3 in the thesis, certain considerations and limiting conditions lead to  

 
2 2 2 2 2 2d d d d ( d ) ( d ) ( d )r c r r c cD D D D R s R s Rτ τ τ= + + = + + .              (2.7.3-1) 

 
 
 

2.7.5. IDD equation with the Rr-intensity and the factors fc and fττττ. 
First and second practical category of non-proportional loadings 

 
Upon looking at Eq. 2.7.3-3, the following question certainly arises: do the intensities 

Rr, Rc and Rτ combined in the equation remain the same basic ones as they are under the 

pure r-loading, c-loading and dτ-loading? Or they are already different for their mutual 
influence? And, if they really influence one another, how do they change in combination? 

There is no reason to expect that the three simultaneously participating intensities 
would remain equal to the basic ones without any influencing on each other. The crack 

growth mechanisms are too different under the pure r-loading, c-loading and dτ-loading, and 

would hardly remain the same in combination. The differences would be thoroughly cleared 

only after implementing experiments for determining the basic Rc and Rτ as described in 

Sections 2.5.1, 2.6.2, 2.6.3, 2.7.4 etc., and only after engaging efforts of many researchers 
interested in these sections.  

So far, IDD verifications could only be done for combined non-basic intensities, and 
separately (according to Sections 1.4.5 – 1.4.7): on the one hand, under non-proportional 

σx(t) and τxy(t), and, on the other hand, under non-proportional σx(t) and σy(t). 
Correspondingly, the first and second practical categories of non-proportional loadings are 
introduced. The first one is more important since it relates to a beam (including a shaft) as 
the most popular model, and the second category relates to the model of shell (including the 

plate). Cases where the three oscillograms σx(t), σy(t) and τxy(t) are all non-zero and all non-

proportional are very rarely met in the engineering. 

In this Section 2.7.5 in the thesis, the expectation is grounded that Rc for the first 

practical category will be lower than for the second one. In general under mixed loading, 

drawing the intensities Rc and Rτ closer to the basic Rr is assumed. This is conditioned by the 

continuity (the smoothness) of the damage accumulation. After all the discussions, and 

missing data from purposeful investigations of the basic intensities Rc and Rτ according to 

Sections 2.5 and 2.6, and facing always such problems put for the first time, then for the time 
being IDD remains to be performed and verified based on the following IDD life equation: 

 
1

2 2 2 2 2

( )

r r c c

S

N R s f s fτ τ

−
 

= ∆ + ∆ + ∆ 
 
 .                          (2.7.5-1) 

 
This Eq. 2.7.5-1 comes from Eq. 2.7.3-1 where Rc = fcRr and Rτ = fτRr are substituted, 

and then N = 1/DΣ,T = [DΣ,T]
-1

 is formed. Rr is the basic, ‘proportional’ damage intensity 

(under r-loadings i.e. uniaxial and proportional multiaxial loadings) determined according to 

Subchapter 2.4; fc and fτ assume the role of factors of (material’s sensitivity to) loading non-

proportionality. Thanks to these factors, the basic ‘proportional’ Rr intensity from the cyclic r-
loadings becomes conveniently usable for life computation under non-proportional loadings. 

The fc and fτ factors are new empirical fatigue parameters which can become as 

popular as the empirical parameters of an S-N line. According to the assumption of drawing 

the three intensities closer, it is to accept that fc and fτ would not differ too much under non-

proportional loadings of the first practical category. As to the second practical category, fc is 

only needed. Anyway, empirical data banks for fc and fτ should be built separately for the first 

and the second practical categories of non-proportional loadings. 
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2.7.7. No-damage areas and lines that surround them 

 

An area round the coordinate origin of the X-Y plane (the generalized plane which is 

the σ'-σ" plane in particular) containing assumed zero values of a given R damage intensity 

is called no-damage area. Let L be a general symbol of such an area. Simultaneously, L will 

also serve as a label of the curved line which surrounds the no-damage area. This line will be 

called surrounding line, border line, limiting line or L line. When the R intensity is specified as 

Rr, Rc or Rτ, then L will be Lr, Lc or Lτ. 

The three lines Lr, Lc and Lτ are illustrated in Fig. 2.7.7-1 just as an example without 
any claiming for their actual disposition one to another. But, as a rule, the condition is kept 

that Lτ and Lc are more inward to the coordinate origin than Lr. This corresponds to the 

expected location of the Rτ and Rc prototypes below the Rr prototype. Fig. 2.7.7-1 relates to 

the plane X-Y ≡ σ'-σ". The illustration for the plane X-Y ≡ ε'-ε" will look similarly. 

Only one quarter of each L line will be used: located in the first quadrant of the 

symmetry axes ξ and η (like in Fig. 2.4.1-1). The IDD user may draw for himself the L line as 

consisting of asymmetrical quarters but he should decide by himself which quarter is to be 
used depending on whether the loading is primarily tensile or primarily compressive, etc. 
That quarter is put in the first quadrant of the symmetry axes and is symmetrically 
reproduced in the rest of the three quadrants. This is in accordance with averaging and 
approximation discussed in the thesis. 

Any L line is not fixed under every loading but varies if the loading is changed: if the 

latter is substituted by another with greater σequ,m, then each L area will ‘swell out’. 

It is very convenient to approximate the lines Lr, Lc and Lτ by the lines lN,r, lN,c and lN,τ 

of equal lives Nr ≡ Nex,r, Nc ≡ Nex,c and Nτ ≡ Nexτ. In fact, instead of apparent lines Lr, Lc and 

Lτ, the numbers Nr, Nc and Nτ will be entered. In this Section 2.7.7 in the thesis, additional 

considerations motivate the intention stated in Sections 2.5.2 and 2.6.4 to use only the 

smooth mode for the computation of DΣ,c and DΣ,τ. And if this mode is also preferred for DΣ,r, 

then the accepted approximation of the lines Lr, Lc and Lτ by the lines lN,r, lN,c and lN,τ is 
additionally grounded. 

 Another IDD follower can, of course, prefer forming and entering each L line 

apparently, separately and 
independently of a corresponding 
line of equal life. However, this is 
hardly worth at the present stage of 
the IDD development.  

The discussion up to here 
leads to the following: together with 

the empirical factors fc and fτ in Eq. 

2.7.5-1, the IDD user will have to 
select and enter empirical 

parameters Nc and Nτ, as well. They 

substitute any controversial notions 

of fatigue limits under non-

proportional loadings. Thus, in fact, 

the empirical data bank built so far 
(in Chapter 5) for the first category 
of non-proportional loadings 

includes four IDD parameters: fc, fτ, 

Nc and Nτ. With that, Nc and Nτ are 

set in comparison to Nr, and Nr 

comes from the input prototypes. 

 

σ' 

σ" 

Fig. 2.7.7-1. L lines (areas) and an 

(Sxy) trajectory  (as an example) 

Lr 
L 

ξ 

η 

Lτ 

Ll 

Lc 

Lmin 
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2.8. IDD in statistical (probabilistic) interpretation  
under random loading 

 

This Subchapter 2.8 in the thesis lays a basis which, regarding its importance, 
complexity and scientific contribution, can grow into a separate thesis or theses. Due to the 
restricted volume of the present Summary, no abstracts from the subchapter are included 
here. The researchers interested in the subchapter can study it in the thesis. They will be the 
researchers who had worked on statistical and probabilistic distributions of amplitudes and 
had never imagined the following: without any need of involving amplitudes, one-dimensional 
and two-dimensional distribution densities of current (instantaneous) stresses can directly 
serve for IDD fatigue life assessment.    

 
 

2.9. Interpolation for IDD 

 
2.9.1. The necessity of interpolation. A number for interpolation  

 

The Ellipse software must be able to generate, if necessary, intermediate ordinates of 

the input oscillograms σx(t), σy(t), τxy(t) (or others) by interpolation among their originally 

entered ordinates. Thus the ∆s elements will be composed as short as to sufficiently 

represent the ds differentials. 

Let ∆T be the interval between two input successive ordinates of every oscillogram 

within T before the interpolation. A so-called number for interpolation ni is introduced: ∆T is 

divided into ni equal parts ∆t. Every original ordinate of every input oscillogram s(t) will be 

reproduced (regenerated) by the interpolation and will be followed by ni – 1 generated 

intermediate ordinates of the oscillogram (the graph) of an interpolation polynomial. In 

particular, ni = 1 will be entered if any interpolation is not needed. 
 
 

2.9.2. Trigonometric interpolation 
 

Trigonometric interpolation means substitution of a periodic stress-time function s(t) by 

a Fourier trigonometric polynomial. This notion evoked by IDD is again new. The 

trigonometric interpolation is close to the harmonic nature of the fluctuations (waves) in s(t). 
Such interpolation is set in the IDD software as original working out. 

 
 

2.9.3. Cubic-spline interpolation 
 

In the last decades of the previous century, different kinds of software for computer 
drawing entered the engineering on a mass scale. The necessity of smooth connecting 
separate points by some curved line, the so-called spline, became one of the key problems. 

For the specificity of the Ellipse software, an author’s own original programming version of 

the cubic-spline interpolation was developed and included in Ellipse during the 90s. This 

required managing many mathematical, algorithmic and programming details that are spared 
in the thesis. 

The cubic-spline interpolation is envisaged for the general non-cyclic loading and can 
substitute the trigonometric interpolation in all the cases. As to the cycle loadings, the   
trigonometric interpolation is more convenient. 

 
 

2.10. Conclusions 
    
The tasks 1 – 4 formulated in Subchapter 1.6 have been carried out. Thus, an original 

theory has been built to enable the new IDD concept, respectively the new IDD research line, 
for fatigue life assessment.  
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In contrast to the large scattering of the existing methods that are often contradictory 
and incompatible, and difficult to select among them, a uniform and universal fatigue life 
equation has been proposed (as a main IDD version): Eq. 2.7.5-1. At its input, the following 

data are: arbitrary oscillograms σx(t), σx(t) and τxy(t), S-N lines in the form of Rr prototypes 

under cyclic r-loadings, empirical factors of loading non-proportionality fc and fτ (respectively, 

Rc and Rτ prototypes), and empirical numbers Nc and Nτ for no-damage areas. 

The input oscillograms do not need any preliminary processing like reducing to a single 
oscillogram, schematization and counting cycles, distribution (spectrum) of amplitudes, 
distribution of means stresses, and so on. This sounds surprisingly to every CCA follower 
who is not familiar with IDD. Every next ordinate of each oscillogram, respectively every next 
oscillogram’s fluctuation, comes directly, as it is, into the integration process. The ordinates 
of the oscillograms take turns in their actual mutuality, and the latter’s influence on the 
fatigue life is automatically accounted. 

The fc and fτ factors participate (only) under non-proportional loading (only fc takes part 

in the second practical category, and none of the two fc and fτ factors participates under 

cyclic, non-cyclic or random r-loading). The many scattered CCA comparative studies 

cannot, anyway, give a basis for universal selection of one of the existing methods; but now 

they can be canalized in building a data bank for fc, fτ, Nc and Nτ. 

It is also to state that each of Subchapters 2.1 – 2.9 represents, as well, an individual 
study which could be a separate investigation with individual conclusions. In this regard, 
Subchapter 2.8 can be especially mentioned: IDD is represented, as well, in a statistical 
(probabilistic) interpretation. The opportunity has been revealed for probabilistic fatigue life 
assessment based on densities of distributions of instantaneous stress values instead of 
stress amplitudes. This opportunity is also surprising, now to every follower of the existing 
methods for probabilistic fatigue life assessment. 

The enabled connection of the individual studies from Subchapters 2.1 – 2.9 makes 
Chapter 2 sufficiently important for revealing the new research line. This thesis could have 
been restricted up to here since the conceptual problems have been solved. However, every 
fatigue life researcher will want to see practical results from IDD. For this purpose, IDD 
software is needed. Therefore, a tough part of the thesis will be (partly) presented in Chapter 
3 and (especially) in Chapter 4: creating the IDD software.   

 
 
 
 

CHAPTER 3.  
SOFTWARE AND VERIFICATIONS OF IDD  

UNDER A SINGLE OSCILLOGRAM 
 
 

3.1. The Integral algorithm 
 

 
3.1.2. Algorithmic IDD equation of the fatigue life 

 

Let consecutive s-ordinates ... sA, sC, sB, ... be entered including peak ordinates sA and 

sB. Between them, intermediate sC ordinates can also be present (Fig. 3.1.1-1 in the thesis). 

The Integral algorithm will recognize and distinguish the peak ordinates and will operate on 

the entire ranges between them.      

A damage DAB is produced from the range AB between two successive extrema A and 

B. According to the Newton-Leibniz theorem, the basic equation for DAB is DAB = D(sB) – 

D(sA) in case the range AB is out of the area Ll, respectively Lr. These areas (Fig. 2.7.7-1) 

are actually linear intervals now. The whole damage accumulated within T is DΣ(T) ≡ DΣ,T = 

ΣDAB. With that, the Integral name is conditional: since using D(s) instead of R(s), no integral 
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of differentials is computed, in fact (such an integral is actually done by the Ellipse 

algorithm). 

Eq. 2.3.2-4 for D(s) is involved, as well as sl for the (peak or range) impulse mode and 

sr for the smooth mode (peak or range impulse mode is explained in the thesis). The 

expression of DΣ,T = ΣDAB and its reciprocal N = 1/DΣ,T lead to 

  

{ }

*

(1) (2) (3) (4) (5) (6)0  [ ( ( ( ( ( 2 )]or or or or or) ) ) )m m m m m m m m m m

B A B B A B r B A r

i A
N

s s s s s s s s s s
=

− + − + −
. 

(3.1.2-1) 

 
Behind the Σ sign, the current addend {…} = {DABi

*
A} stays in which sA and sB are the 

previous and the current (serial) peak s-ordinates renamed so that sB > sA in absolute values. 

In this addend, sl may stay instead of sr. The very addend is: 
(1)

 0, if sB ≤ sr (respectively sB ≤ sl)  (the range AB is inside the interval Lr, respectively 

Ll; the limits of the interval are included in it); 

(2)
 

−m m

B As s
, if sA > sr (respectively sA > sl) and A and B are on the same side from zero 

(AB is one-sidedly out of Lr, respectively Ll); or if sA ≤ sl (A is inside) in range impulse mode; 

(3)
 

m

Bs
, if sA ≤ sr (respectively sA ≤ sl) (A is inside) in peak impulse mode; 

(4)
 

m m

B As s+
, if sA > sr, (respectively sA > sl) and A and B are on the both sides from zero 

(AB comes out from the both sides of Lr, respectively Ll) in impulse range or peak mode; 

(5)
 

−m m

B rs s
, if proceeding in smooth mode and sA ≤ sr (A is inside); 

(6)
 

− + −m m m m

B r A rs s s s
, if proceeding in smooth mode and sA > sr, and A and B are on the 

both sides from zero (AB comes out from the both sides of Lr). 

The sudden addend 1/(i
*
Nl) is included implicitly and automatically in the options 

(3)
 

and 
(4)

. Respectively, it is excluded (by the subtraction of sr
m
) in the options 

(5)
 and 

(6)
.     

 
 
 

3.1.3. The Integral computer program. Demos 
 

The Integral program is much simpler than Ellipse. Its heart is the algorithmic Eq. 

3.1.2-1. The current input s-ordinates are read from a preliminarily prepared file. In the thesis, 

every current-data file is accepted to have a name beginning with the C letter. Thus, ‘C-file’ is 
often said in short.  

The input S-N line data, i.e. the data of the input R-prototype, are entered from the 

keypad. Such data are called leading data or L-data. The L-data of the input prototype are sl 

(displayed as Sl), Nl (Nl) and m (m); sl and Nl are the coordinates of the R-prototype’s 

through-point. The latter is the point of breaking the S-N line in two in the peak and range 

impulse modes, and sl is the fatigue limit in the algorithmic Eq. 3.1.2-1. In the smooth mode, 

the through-point can also be given with different coordinates, although under the same 

names sl and Nl. Now, instead of sl, sr (Sr) participates in Eq. 3.1.2-1 and is given separately. 

The divisor i
*
 (i*) is also entered. 

The program, under the name INTEGRAL.EXE, can be downloaded from the IDD 

site. 

Further on in this Section 3.1.3 in the thesis, Integral program demos are done as a 

part of the IDD software manual.  
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3.3. Real tests and comparison (under zero static level) 

 
 
 

3.3.1. Experimental oscillograms and S-N line  
 
Experimental fatigue life data are used from tests of flat specimens under uniaxial 

tension-compression carried out by Polish authors. Nine s(t) oscillograms were produced 

with zero expected value for the static level. Each oscillogram is within a representative 

interval (period) T = 649 s and contains 245 760 ordinates. About 100 000 of them are peak 

ordinates and the rest of them are intermediate ordinates. Four specimens were tested at 
each of the nine loading levels. 

The experimental points for the S-N line, the line itself (it proved to be smoothly 

bending) and its R-prototype are shown in Fig. 3.3.1-4 in the thesis. 

 
 
 
 

3.3.2. Experimental and computed lives 
 

The experimental lives TNexp and the computed rain-flow lives TNcmp are shown in the 

thesis in Table 3.3.2-1 and in an Nexp-Ncmp diagram in Fig. 3.3.2-1. The rain-flow computed 

lives were obtained by means of the free software (freeware) on the site http:// 
www.pragtic.com/program.php of Dr. Papuga. He kindly and competently cooperated for the 
computer processing on the nine C-files. They were kindly provided by the Polish Professor 
Lagoda under original names 0r21 – 0r29. 

The PragTic cycle counting can be done as one-parameter schematization like in 

Section 3.2.2: without sm,i mean stress effect inclusion, i.e. by putting all the cycles directly on 

the zero static level. Two-parameter schematization, i.e. sm,i mean stress effect inclusion, can 

also be done. Each sa,i amplitude is transformed (enlarged) according to sm,i by means of one 

of the following options: (a) Goodman; (b) Gerber; (c) Smith-Watson-Topper (SWT). The 
latter was recommended by Dr. Papuga as providing very good results. Many details on the 
computations are spared in the thesis but can be seen in an Excel file 3.3.2.xls on the IDD 
site. Below, short abstracts from this Section 3.3.2 in the thesis follow. 

Only after using the rain-flow method in the two-parameter schematization (taking sm,i 

into account) based on the recommended SWT version, were improved (the best) values 

1,11 and 1,13 obtained for averaged ratios Ncmp/Nexp,m. By the way, it is clear that improved 

CCA schemes can always be proposed and the proposals can be many. Under such variety 
and scattering of methods proposed, it is confirmed again that to concentrate the efforts 
within the IDD conceptual frame looks more reasonable. 

The nine C-files are on the IDD site. The computed IDD lives are illustrated in Fig. 

3.3.2-2. Nearly all the points are within the both scatter bands of the factor 2. The enlarged 

solid square symbols (�) relating to the mean (averaged) lives TNexp,m take places now on 

the upper side, now on the lower side of the diagonal line of the factor 1. The average of the 

ratios Ncmp/Nexp,m (including conditionally also 0r21 and 0r22) proves to be 1,01 i.e. very close 

to 1 (if excluding 0r21 and 0r22, then 1,03 is obtained). 

The comparison of the IDD life results with the rain-flow results in the one-parameter 
and two-parameter schematization versions indicates that this IDD verification happens to be 

more than successful: it gives averages of the ratios Ncmp/Nexp,m which are the most favorable 

(nearly equal to 1). And, as well, the scattering of the ratios Ncmp/Nexp,m in the meaning of the 

root mean square of the deviation trends to be minimal with IDD. 

The computed IDD lives prove to be approximately the same if sr and m are varied in 

certain limits, and if the smooth mode is replaced by the peak or range impulse mode. 
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3.4. Conclusions 
 

The reduced IDD version under a single s(t) oscillogram has been worked out as 

implementation of the task 5 from Subchapter 1.6. For practical application of this IDD 

version, the Integral program had been created to substitute the Ellipse software in case 

there is a single non-zero oscillogram instead of three input non-proportional oscillograms 
envisaged. As well, the subtask of testing IDD in comparison with the rain-flow method and 
other CCA methods has been fulfilled. 

The main final conclusion is: IDD successfully ‘takes the examination’ under a single 

arbitrary s(t) oscillogram and, moreover, may predict the fatigue life better than the two-

parameter schematization based on the rain-flow method with accounting the sm,i effect (the 

mean stress effect). After the ‘examination taken’, the re-direction of the efforts to IDD 
application to multiaxial non-proportional loadings can already be done. 

CCA has to ‘dip into the future’ to look for sm,i and involve its influence on DT,i, 

moreover in different versions without establishing any, indisputably. Whereas, the influence 

of different sm,AB values on DAB from equally large AB ranges is involved automatically by Eq. 

3.1.2-1: in case sm,AB is greater, DAB is immanently obtained also greater. 
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Fig. 3.3.2-2. Diagram of the experimental lives TNexp and the IDD computed lives 

TNcmp using the smooth mode with sr = 230 MPa  
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CHAPTER 4. THE ELLIPSE SOFTWARE 
 
 

4.1. The more important mathematical and algorithmic details 
 

In the thesis, the full mathematical and algorithmic details are spared. In general, the 
efforts done for many years for surmounting all the math-and-algorithm problems faced 
during the numerous tests and applications of the software cannot be presented in detail in 
the thesis; neither can all the entailed complications and improvements be described. 
Moreover, full author’s results from a programming labor are not supposed to be entirely 
presented in case the software is envisaged for copyright protection. Only the more important 
(the conceptual) details are presented. They have not been immediately obtained but after 
lots of other ideas, trials and rejections. A lot of algorithmic traps have been surmounted. 

 
 

4.1.10. The graph mode 
 

The graph mode is on in case the user requests it. A Fortran option is used to make the 
screen full and function in color graph mode 320x200. The background is set blue but the 
user can request it white (as it is in Fig. 4.6.1-1).  

The color palette includes green, red and tan. 
From the rectangle area 320x200, a square is separated right (Fig. 4.6.1-1) within 

which the trajectory is displayed, and left from the square a field is available for captions. The 

user sets the square as a part of the X-Y plane where the trajectory (Sxy) is expected to find 

place. Correspondingly, algebraic values are entered for minX to the left side of the square, 

maxX to its right side and minY to the bottom side. 

Insofar falling into the square, there are displayed: (in green) the axes X, Y, ξ and η; (in 
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tan) the radial lines with ki entered (if any of the axes X, ξ and η is also one of those radial 

lines, it also becomes tan). 
If the user enters minX and maxX with a little difference between them i.e. a small A, it 

is zooming in: a small square from the X-Y plane is displayed on the whole screen.  And if a 

big A is entered, it is zooming out. The respective scaling is an essential issue while creating 

the algorithm. 
Fig. 4.1.10-1 represents a print-screen copy after a pause requested at i = 9. The user 

is expected to enter j: the number of next ∆sxy elements to be displayed in a group. If a great 

j is entered (up to one million), a lot of elements will quickly be displayed or the entire 

trajectory will be drawn. Correspondingly, the digits of the numbers left from the square will 
change quickly. After exhausting j, the next pause occurs. If the user wants to observe the 

elements one by one, then Enter is just pressed for each element. Thus, the changing 
numbers left from the square can also be observed one by one. After drawing the entire 
trajectory, the life prediction result will be displayed. 

 

 

4.2. The EllipseT program 
 

The EllipseT program is the basic one of the Ellipse software. The last T letter of the 

program’s name means using trigonometric interpolation. As already known, this and any 
other program of the IDD software can be downloaded from the IDD site. The Fortran name 
of the program is ELLIPSET.EXE. 

The IDD user could not immediately acquire (the work with) EllipseT (and the entire 

Ellipse software). Certain self-teaching is necessary by means of the demos/exercises 

presented further in the thesis. All the files mentioned there are available on the IDD site. 
In the thesis, five sections of this Subchapter 4.2 are presented. They compose the 

main part of the manual for teaching how to work with the IDD software. 
 
 

4.3. The cubic-spline interpolation.  

The program EllipseS (and EllipseC) 
 
 

4.3.2. Demos with EllipseS (similar to sections 4.2.1 – 4.2.3) 
 
The Fortran name of the program is ELLIPSES.EXE. It can also be downloaded from 

the IDD site together with the files for the demos.  
In the thesis, the contents of this Section 4.3.2 and of the next Section 4.3.3 represent 

the next part of the manual for teaching how to work with the IDD software. 
 
 
 

4.4. Conclusions 
 

An original differential theory was developed for the variant and invariant non-
proportionally varying stresses and strains, and for the transition from the variant to the 
invariant ones and vice versa in a one-to-one correspondence. A lot on new notions were 
involved. Within the frames of this theory, the following problems were solved: determination 

of the α'(t) function (the principal axes rotation) and switchover of the ± signs in the principal 

stresses and strains equations. For this purpose, three switchover conditions (the third one is 
angular or radial) were (for the first time) deduced, and a necessity of dividing variant 
elements into two subelements each was found out. The very problem of such dividing was 
also solved. 

The 6th task (formulated in Subchapter 1.6) engaging the most efforts and time was 
successfully fulfilled: the software for IDD computation was created. Mathematical and 
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algorithmic problems were solved having such volume and difficultness which usually 
engage in the scientific research a whole team of mathematicians and programmers. 
Instead, efforts of the author were engaged for many years. A lot of algorithmic difficulties 
and traps were surmounted. A lot of programming work was done. A manual for using the 

Ellipse software was written.  

 
 

 
CHAPTER 5. IDD VERIFICATIONS UNDER NON-PROPORTIONAL  

LOADINGS OF THE FIRST PRACTICAL CATEGORY 
 

5.1. Strategy of the verifications 
 
As grounded in Section 2.7.5, the IDD Eq. 2.7.5-1 will be verified in the thesis only 

under non-proportional loadings of the first, more important practical category relating to 
bending or axial loading and torsion of a beam as the most popular model of a structural 
component. 

The strategic aim of the verifications is to build an initial data bank of the new empirical 

IDD parameters fc, fτ, Nc and Nτ. It seems attractive and possible to take the world-wide 

scattered fatigue life experience under proportional and non-proportional loadings and focus 
it universally to IDD based on such empirical parameters. The verifications will indicate 
insofar the IDD parameters show some clear correlation according to the material etc., some 
repeated appearance and predictability, so that they would really turn into popular new 
empirical fatigue characteristics placed in manuals, data bases, etc.   

The strategy includes, as well, the opportunity for every other researcher to use the 
experimental data from the verifications done and try to check whether they are better 
covered by another proposed method than IDD. And if the result from such a trial is negative 

New verification 

Нова верификация 

Updating the IDD 
diagram 

Publication 

 

Varying the IDD 

parameters fc and 

fτ, and/or Nc and 

Nτ, new analysis 

and discussions, 
new optimization of 
the averaged 

Ncmp/Nexp ratio to 1 

 

Final IDD diagram from all the verifications. Final conclusions on the data of the 

IDD factors fc and fτ, as well as on the Nc and Nτ numbers. Recommendations 

for their values in next IDD applications.  
 

Does the average of the 

Ncmp/Nexp ratio deviate too 

much from 1? 

End of the 
verifications? no yes 

no 

yes 

Fig. 5.1-1. Algorithm of the verifications 
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(as expected), this would actually lead to establishing IDD. 
In this Chapter 5 in the thesis, six verifications (1) – (6) preceded by an adaptation (0) 

are presented. Their descriptions, all the many illustrations to them and the individual results 
obtained are spared in this Summary. The verifications done are considered sufficient for 
finalizing the thesis and presenting it for defense. However, the work does not conclude with 
these verifications: before, during and after presenting the thesis, the verifications continue in 
Volume II. With that, there is a progress in forming an initial data bank of the (only) two IDD 

parameters fc and Nc under non-proportional loadings of the second practical category. 

The verifications strategy follows the algorithm shown in Fig. 5.1-1. The ‘IDD diagram’ 

in this algorithm means an Ncmp-Nexp diagram from the IDD verifications. 

 
 

5.9. Conclusions from Chapter 5 
 

5.9.1. IDD Ncmp-Nexp diagram 

 

In Fig. 5.9.1-1, there are placed in all 49 values of Nexp and corresponding 49 values of 
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• (0) (Initial adaptation) 90
0
-out-of-phase 

angle and different frequencies of bending 
and torsion, 30ХГСА steel, hardened, 
smooth specimens 

 (1) 90
0
-out-of-phase angle and  

different frequencies of axial loading and 
torsion, GTS45 cast iron material, smooth 
specimens 

 (2) 90
0
-out-of-phase bending and torsion, 

Ck 45 (SAE 1045) steel, notched, Ktb = 

1,49 and Ktt = 2,24 

� (3) 90
0
-out-of-phase axial loading and 

torsion, C40 (SAE1040) steel, V-notched, 
Kta = 3,68 and Ktt = 1,95 

 
 (4) 90

0
-out-of-phase and 45

0
-out-of-phase  

axial loading and torsion,  
S235G2T (St 35) steel,  
laser-beam welded tube-tube specimens, 
‘keyhole’ FE model of stress  
concentration 

 (5) 90
0
-out-of-phase bending and torsion, 

Fe-1.5Cu sintered steel, notched, Ktb = 

1,49 and Ktt = 2,24 

 (6) Rotating bending with constant torsion, 
45 steel, hardened, smooth specimens 

Fig. 5.9.1-1. IDD Ncmp-Nexp diagram from the (0) initial adaptation and the 

(1) – (6) verifications (the Ncmp/Nexp ratios have 1,02 average and 0,52 
standard deviation from the average) 
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Ncmp from the adaptation (0) and the verifications (1) – (6). Three of the Nexp values are 

considered as ‘greater than’ for the availability of run-outs (survived specimens). For the rest 

46 Ncmp/Nexp ratios the statistical data (in the Ch5.xls file) are valid as follows. 

The average is 1,02: an extremely good result. The standard deviation (from the 1,02 

average) is 0,52: a very successful result. It means that in future similar IDD applications 

Ncmp will be expected to appear most probably between 1,54
-1

Nexp = 0,65Nexp and 1,54Nexp. 

The greatest deviations of Ncmp/Nexp are Min 0,27 = 3,68
-1

 and Max 2,86. They have both 

appeared in the initial adaptation whereas in the verifications (1) – (6) Min is 0,47 = 2,14
-1

 

and Max is 2,45. By the way, the average of Ncmp/Nexp from the verifications (1) – (6) is 1,05 

and the standard deviation is 0,41. 

 
 

 
5.9.2. Empirical data bank of the IDD parameters and conclusions 

 
So far, based on the thesis (and the latest studies being placed in Volume ІІ), the 

following empirical data bank (Table 5.9.2-1) has been formed for the first practical category 
of non-proportional loadings. The bank is, of course, initial and uncompleted but is a good 
basis for next IDD fatigue life evaluations.  

According to the previous Section 5.9.1 and speaking more generally, the expected 

inaccuracy of Ncmp would be less than 2 as an error factor (i.e. 0,5 < Ncmp/Nexp < 2). This 

inaccuracy can always be directed to the safety side by setting proper higher values of the 
four IDD parameters. 

Next verifications intended will precise Table 5.9.2-1 and would change its structure. 

So far, it seems that fc and fτ for steels are in correlation with the static strength: fc and fτ are 

2 and 3 in case Rm exceeds ≈700 MPa, and fc and fτ decrease to 1 and 1 when Rm is down to 

about 410 MPa. It is expected that the correlation considered will be expressed later as 

Table. 5.9.2-1. Empirical data bank of the IDD parameters for the first practical category 
of non-proportional loadings 

IDD parameters 
Confirmed for 

Rm, Rp0,2 MPa/ Materials  Specimens Loadings 

S
te

e
ls

 

fc = 2  

fτ = 3 

Nc ≥ Nr 

Nτ ≥ Nr 

1490, 1300/ 45 (hardened) 

1310, 1090/ 30ХГСА 

1030 (welding), 350/ 
S235G2T (St 35) 

850, 704/ Ck 45 (SAE 1045) 

715, 537/ C40 (SAE 1040) 

Smooth and 
notched  

(with Kt to 

about 3,68), 
and welded 

Non-proportional 
bending or axial 
loading and torsion 

with tc to about 0,62 

and tτ to about 0,73, 

with σequ,m = 0 and 

σequ,m > 0, with 
various forms of 
trajectories 

(2 > fc > 1,  

3 > fτ > 1, 

Nc > Nr, 

Nτ > Nr) 

(551, 365/ 11523.1) (Smooth) 

fc = 1 

fτ = 1 

Nc > Nr 

Nτ > Nr 

410, 300/  Fe-1.5%Cu Notched 

C
a
s
t 

ir
o
n
 fc = 2 

fτ = 3 

Nc > Nr 

Nτ > Nr 

449, 305/ GTS 45 Smooth 
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clearer functions fc = fc(Rm) and fτ = fτ(Rm) in intervals with lower limits about 1 and upper 

limits about 2 and 3. These intervals are not large and therefore even a significant scatter of 

the functions fc(Rm) and fτ(Rm) in them would not deprive every new fatigue life assessment 
of success. So far, the data in the Specimens and Loadings columns of Table 5.9.2-1 do not 

seem to influence fc(Rm) and fτ(Rm). In other words, fc and fτ seem to be valid for any 
specimens and any loadings of the first practical category, as well as for non-zero static 
levels of the oscillograms. 

The cast iron material in Table 5.9.2-1 showed fc = 2 and fτ = 3. It will be interesting 

and important, of course, to have data for fc and fτ obtained also for aluminum alloys and 

other materials. 
The studies on the 11523.1 steel, included in the data bank, relate to smooth tubular 

specimens subjected to non-proportional tension-compression and torsion. These studies 
continue after the presented final version of the thesis and go into Volume II. They are done 
together with Jan Papuga and other Czech researchers. Publication of the results is 
envisaged for later (therefore, parentheses are used in the corresponding row of Table 5.9.2-

1). Variant trajectories with various interesting forms in the σx-τxy plane were implemented. 

Computed IDD lives are obtained in a good agreement with the experimental ones in case fc 

and fτ are set by interpolation to be between the values valid for C40 (SAE 1040) and Fe-

1.5%Cu. This confirms the above-mentioned decrease in fc and fτ due to a decrease in Rm. 

Dr. Papuga has also applied other methods but so far their computed lives results 
significantly yield to the IDD results. 

The numbers Nc and Nτ are left with some indefiniteness in Table 5.9.2-1. In fact, the 

areas Lc and Lτ are not strictly given. This corresponds to the opinion, already mentioned, 

that the notion of fatigue limit contains some uncertainty and fictitiousness especially under 

arbitrary non-proportional loadings. What only looks for sure is that the Lc and Lτ lines should 

be more inward to the coordinate origin than the Lr (or Ll) line. This can be ensured even by 

the equalities Nc = Nτ = Nr but only if fc > 1 and fτ > 1. Otherwise, in case fc and fτ near 1, then 

Nc > Nr and Nτ > Nr should be set. 

As to trajectories which go farther out of the Lr area, setting Nc and Nτ to be or not to be 

greater than Nr cannot seriously influence Ncmp. However, if the trajectory does not go out of 

the Lr area, then the selection of Nc and Nτ to be greater than Nr becomes important. As 

shown in the thesis, if a trial increase of Nc and Nτ sharply changes Ncmp, then stronger 

inequalities Nc > Nr and Nτ > Nr should be preferred. Generally speaking, as a tentative 

recommendation, Nc and Nτ should be selected in the order of 10Nr with possible error in 
favour of safety. 

It is to additionally note that fatigue life assessment methods are also proposed by a 
part of the authors of the experimental data used in the IDD verifications. None of all the 
other methods has been simultaneously applied to all the experimental data of the six IDD 
verifications. If such a trial is done, it will be seen that the conclusions in Subchapter 1.5 are 
confirmed: too various methods, proved only in specific loading cases, incompatible (or 
inapplicable) and conflicting to each other in all the cases. 

 
 
 

CHAPTER 6. NECESSITY AND POSSIBILITY FOR APPLICATION OF IDD 
TO MACHINES AND TECHNICAL EQUIPMENT IN THE FOREST INDUSTRY 

 
 

6.2. First example [33] 

 
6.2.1. Circular shaft. Kinematics of cutting  

  
In this Section 6.2.1 in the thesis, a conclusion is drawn  that  for  the  purposes  of  the 



http://www.freewebs.com/fatigue-life-integral/ 63

next load and strength calculation, the forces on the circular blade teeth can be considered 
as concentrated in the tooth vertices (as shown in Fig. 6.2.1-4 in the thesis). 

 
 

6.2.3. Approximate expectations of the normal and sheer stress oscillograms  
 

In this Section 6.2.3 in the thesis, after all, the possible τ(t) and σ(t) oscillograms 
shown in Fig. 6.2.3-2 are derived in a try to take into account preceding conclusions and 

example numerical data. Concrete stress scales in MPa are not given but only relations 

between fluctuations.  
 

Fig. 6.2.3-2. Possible τ(t) and σ(t) oscillograms during a complete cut through the 

160x160 mm square cross section for about 6 seconds 

τ 

t 

 

σ 

t 
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6.2.4. Conclusion 
 
If involving also the other cutting regimes besides the cross cutting considered, as well 

as all the possible dimensions of the piece of wood and varying the many sorts of the wood, 

then a quite multiform spectrum of σ(t) and τ(t) oscillogrmams will be obtained. If carrying 
out strain-gauge investigations, the experimental oscillogrmams obtained will have the last 

word. Anyway, fatigue life computation is to be done under oscillograms σ(t) and τ(t) that are 
very complicated, quite specific (not met at other machine shafts), non-cyclic, random and 
non-proportional. Practically, it is very likely that each author of a different method for fatigue 
life assessment, after seeing the oscillograms in Fig. 6.2.3-2, will decline an invitation to 
apply that method. Whereas, the IDD method is applicable namely under such conditions 
and therefore it is necessary. All the knowledge from the thesis, and mainly from the 
verifications in Chapter 5, can be applied. Of course, this is not possible within the frames of 
the thesis that is already ‘too swollen’. But namely based on the thesis, a large field is 
opened for future doctorands to obtain concrete IDD fatigue life computation results within 
the doctoral program ‘02.01.32 Machines and Technical Equipment for the Forestry, Wood 
Industry, Woodworking and Furniture Industry’.   
 
 
 

6.3. Second example  
 
 

6.3.1. Band-saw blade 
 
In the books where the fatigue of materials is treated, the notion of a random 

oscillogram with a non-zero mean (static) stress is introduced. But no popular example is 
established as classic. And namely the case of the band-saw blade where the tensile stress 
oscillogram will vary about a static level is very suitable to become a classic example. 

 
 

6.3.2. Calculation scheme 
 

A scheme (a model) is shown in Fig. 6.3.2-1 (in a first version) in the thesis. The 
scheme is of a kind which is usually imagined by a professor in Strength of Materials. In the 
case considered, the saw band is a typical engineering example of a statically indeterminate 
closed contour. Such statically indeterminateness is a classic subject in any Strength of 
Materials course, including in the author’s textbooks. There, as well as in the thesis, details, 
explanations, terms and symbols involved can be found.  

An ‘opening’ in the closed statically indeterminate contour is shown in the thesis with 

revealing the two equal and opposite internal tensile forces with a common X magnitude. The 

solution of the statically indeterminate problem i.e. the determination of X can be achieved 

based on the deformational equation ∂U/∂X = λ – αtl∆t. The equation’s left side ∂U/∂X 

(unless it is represented in a different form) could be developed e.g. as a sum of Castigliano 
integrals. Besides, with the deflection of the saw band along the two half-circumferences of 

the band wheels, the equation My(x) ≈ EJy/R will participate where R is the radius of the 

wheels. The problem becomes very interesting. It will be developed together with students as 
coauthors and band-saw specialists from the Faculty of Forest Industry.  

 
 

6.3.3. Expectations of the tensile stress oscillogram. Conclusion 
 
The analysis from the previous Section 6.3.2 is already sufficient to envisage the 

tensile stress oscillogram as follows. The diagrams of the variable Nx(x) and My(x) along the 

whole length of the saw band will be obtained. Hence, the diagram of the tensile stress σ(x) 

will result from Nx(x) and My(x) simultaneously. And now: while any cross-section of the band 
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is traveling the whole length of the moving saw band, the graph of the σ(x) function is turning 

into a σ(t) oscillogram. This is an essential point of consideration contributing to the thesis.   

With that, cutting force P = constant is assumed up to here. And if setting P = P(t) like 

in the analysis in the previous Subchapter 6.2, then the σ(t) oscillogram will prove to have 

complex and random variations. They will be additionally complicated if involving vibrations 
and other more dynamic phenomena. It will be an essential scientific achievement when 

obtaining a final and actual oscillogram of σ(t) in a band-saw blade. That oscillogram will be 

a very good occasion for IDD application following the verification in Chapter 3. The case will 
be popularized to become a classic example as stated in Section 6.3.1. 

The spirit of the conclusion in the previous Subchapter 6.2 (Section 6.2.4) remains 
here, as well. Indeed, the fatigue loadings in the machines and technical equipment in the 
forest industry prove to have such complicatedness and complexity as to open one of the 
widest fields for application and demonstration of IDD in next diploma and doctoral theses. 
The envisaged joint studies with the students, and the collaboration with the specialists in 
machines and technical equipment for the forest industry, and the IDD defence discussions, 
will all give the author good chances to contribute to making the Faculty of Forest Industry 
known as one of the most competent faculties in reference to fatigue of materials. 
 
 

 

 
 
 

CONCLUSION 
(Final concluding notes) 

 
The mechanism of forming the fatigue life is too complicated and inscrutable. This 

provides a possibility to every researcher to propose his own CCA method (model) for fatigue 
life assessment which contains some partial truth and is experimentally confirmed in some 
limited scope. Another researcher, under different experimental data and different loadings, 
does not find confirmation of the previous method and, in his turn, also proposes his own 
model. After all, there is not any uniform, all-acknowledged and universal CCA method but 
there are many disputable methods comparing to each other, each one with its partial truth 
and that is why they tolerate each other.   

Now, something radically different is proposed: not to have loading cycle as the basic 
notion but to have it as a particular notion, and, instead of searching for disputable cycles, to 
follow the indisputable differentials (Fig. 1.1-3b) of any loading and directly compute the 
damage differentials per the loading differentials. 

Thus, it is not simply about a serial new method in expectation of a tolerant attitude. 
Now, a united skeptical or negative reaction is possible: considering that many thousands of 
fatigue life researchers in the world had searched for cycles in every loading, the IDD 
concept and the author’s IDD method could make a lot of opponents. They could even state 
that IDD rejects all the accumulated fatigue life knowledge built on the basis of the notion of 
loading cycle. On this occasion it is to pay attention again to the contributions 2.3 and 13.4 
(in Expanded Review of Contribution on the IDD site): IDD rejects nothing of the existing 
knowledge. The thesis has entirely been built on the basis of the existing knowledge and the 
main idea is to use it in another way. 

It is understandable that the colleagues would express skepticism and jealousy after 
they have devoted theirs investigations and careers to CCA and received acknowledgements 
and degrees for that. It is understandable that they would look for weak points of the IDD 
concept and of the author’s IDD method, and would raise controversial questions since the 
complicated and inscrutable mechanism of forming the fatigue life leaves a large place for a 
lot of disputation. 

However, there is a possibility which leaves no place for disputation on whether IDD 
should be acknowledged or not, as follows.  
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Let any IDD opponent verify any other fatigue life evaluation method by using the same 
experimental data files used also by the author in the IDD verifications done in Chapter 5. Let 
the verification in Chapter 3 be also added. Let the verification or verifications continuing in 
Volume II be added, as well. All the experimental data are not of the IDD author but of other 
authors and therefore a partial selection of one’s own experimental data is excluded. And if 
the IDD opponent proves that the other method is always applicable in all the mentioned 
cases and categorically excels the IDD method, then the disputation ends: the IDD method 
should withdraw. Moreover, the other method will prove to be that missed one which can 
claim for general validity now. But if the other method yields, the disputation ends again: the 
IDD method should be given the right of way. Moreover, resetting and canalizing the world 
investigations to IDD should be recommended. 

If the other method and the IDD method turn out to be approximately tantamount, again 
the IDD method should be given the right of way to continue comparing and proving itself in 
next and next verification (Volume II). With that, the oscillograms should purposefully be 
diversified as much as possible: to be of both the first and second practical category of non-

proportional loadings, and of mixed loading with various trajectory ratios tr, tc and tτ, and of 

various trajectory’s forms, and of both cyclic and non-cyclic loadings, and of both 

deterministic and random loadings, and of pure r-loadings, pure c-loadings, pure dτ-loadings, 

and so on. 
Hereby the author closes and lets the colleagues and the honorable scientific jury 

members take the scientific responsibility for the evaluation of the thesis.  


