SYMBOLS

(only the most important symbols for presentation and application of the method)

(the symbols in Courier New are those visualized in graph mode)

Latin

- ', " Principal axes of plane state of stress
- A Constant in S-N line equation; constant for σ
- A Side of square in graph mode
- a Mathematical expression in the role of coefficient of elliptic equation
- a Amplitude index
- As Addend to s(t); s_m
- B Constant for σ'
- b Mathematical expression in the role of coefficient of elliptic equation
- Static center of a variant trajectory (its coordinates are $\sigma_{x,m}$, $\sigma_{y,m}$ and $\tau_{xy,m}$)
- c $-1/s^2$ in the role of coefficient of elliptic equation
- Code 1: $\sigma_x(t)$, $\sigma_v(t)$ and $\tau_{xv}(t)$ are entered; $X-Y \equiv \sigma' \sigma''$; Nrct=3
 - 2: $\sigma_{X}(t) \equiv \sigma'(t)$ and $\sigma_{Y}(t) \equiv \sigma''(t)$ are entered; $X-Y \equiv \sigma'-\sigma''$; Nrct=2
 - 3: $\sigma(t) \equiv \sigma_x(t)$ and $\tau(t) \equiv \tau_{xy}(t)$ are entered; $X-Y \equiv \sigma' \sigma''$; Nrct=3
 - 4: $\sigma(t) \equiv \sigma_x(t)$ and $\tau(t) \equiv \tau_{xy}(t)$ are entered to appear along ξ and η ; Nrct=2
 - 5: $\mathcal{E}_{x}(t)$, $\mathcal{E}_{v}(t)$ and $\chi_{xv}(t)$ are entered; $X-Y \equiv \mathcal{E}-\mathcal{E}''$; Nrct=3
 - 6: $\mathcal{E}_x(t)$, $\mathcal{E}_y(t)$ and $\mathcal{E}_b(t)$ are entered from x-y-b rosette; $X-Y \equiv \mathcal{E}-\mathcal{E}''$; Nrct=3
- D Fatigue Damage; $D(s) = 1/[i^*N(s)]$ is primitive function to R(s)
- D Symbol for D_{Σ} in graph mode
- d Differential (that is numerically substituted by Δ)
- d_c Ratio of damages: $d_c = D_{\Sigma,c,T}/D_{\Sigma,T}$
- dD Damage differential; dD_r is per ds_r ; dD_c is per ds_c ; dD_{τ} is per $d\tau$
- d_r Ratio of damages: $d_r = D_{\Sigma,r,T}/D_{\Sigma,T}$
- ds Loading differential
- Ds Devisor of s(t)
- ds_c Circumferential component of ds and ds_{xy}
- ds_r Radial component of ds and ds_{xy}
- ds_{xy} Component of ds in X-Y plane
- D_T Damage per a cycle within T

- D_{Σ} Cumulative (current) damage.
- $D_{\Sigma,cr}$ Critical accumulated damage ($D_{\Sigma,cr} = 1$ in this thesis)
- $D_{\Sigma,c,T}$ Damage accumulated in T as a sum of differentials ΔD_c
- $D_{\Sigma,r,T}$ Damage accumulated in T as a sum of differentials ΔD_r
- $D_{\Sigma,T}$ Damage totally accumulated in T as a sum of differentials ΔD
- $D_{\Sigma,\tau,T}$ Damage accumulated in T as a sum of differentials ΔD_{τ}
- $d\tau$ Component of ds perpendicular to the σ' - σ'' plane.
- d_{τ} Ratio of damages: $d_{\tau} = D_{\Sigma, \tau, T}/D_{\Sigma, T}$.
- E Young modulus
- f Ratio $f = R/R_r$ in case a single R-intensity is used
- f_c Factor of (sensitivity of the material to) loading non-proportionality (associated with immovability of the principal axes): $f_c = R_c/R_r$
- f_{τ} Factor of (sensitivity of the material to) loading non-proportionality (associated with rotation of the principal axes): $f_{\tau} = R_{\sigma}/R_{r}$
- i Counter of the input prototypes, i = 1, 2, ..., n; counter of the addends of sums
- i Counter of the trajectory elements in graph mode; counter for other purposes
- i^* , i* Divisor for static (mean) stress, respectively for loading asymmetry
- Number of trajectory elements to be displayed in a group; counter for other purposes
- k, k Ratio k(t) = Y(t)/X(t); k(t) is mostly $\sigma''(t)/\sigma'(t)$; k = const under one-component or proportional loading and for an input R-prototype
- k_i k for ith input R-prototype (one of its parameters, see also $\sigma_{\text{max,i}}$)
- No-damage area (with R=0) in the X-Y plane; the curved limiting line surrounding that area; L is particularly L_r (or L_l) for $R_r=0$, L_c for $R_c=0$ and L_τ for $R_\tau=0$; the L line is a limiting l_N line of equal life $N\equiv N_{\rm ex}$
- Index of limit (or of fatigue failure locus, etc.)
- $l_{\rm equ,m}$ Line of equal equivalent mean (static) stress $\sigma_{\rm equ,m}$
- L_{\min} Absolute smallest no-damage area.
- l_N Line of equal life N (from R_r -prototypes) under cyclic proportional or one-component loadings (cyclic r-loadings)
- Ln Life name in graph mode
- m, m (Indicator of) slope of an S-N line
- m Mean (static) stress index
- max Index of maximum of stress cycle or maximum in a oscillogram

maxX Fixes the right side of the square in graph mode

 m_i m of ith input R-prototype (one of its parameters, see also $\sigma_{\text{max,i}}$)

min Index of minimum of stress cycle or minimum in a oscillogram

minX Fixes the left side of the square in graph mode

miny Fixes the lower side of the square in graph mode

 m_l , M1 Multiplier of life

Ms Multiplier of s(t)

N Life as a number of repetitions of T to fatigue failure: $N = 1/D_{\Sigma,T}$; number of cycles to failure, function $N(s) \equiv N(s_{\text{max}})$; abscissa of a point of an S-N line

n, n Number of input prototypes, $2 \le n \le 9$; number of input ordinates of s(t) to be processed by *Integral* program; fatigue safety factor

n1 Serial number of first series to be processed by *EllipseS* program

n2 Serial number of last series to be processed by *EllipseS* program

 N_c Number of cycles (see also $N_{\rm ex}$) for forming the limiting line (the no-damage area) L_c

 $N_{\rm cmp}$ Computed life

 $N_{\rm ex}$ Extrapolated number of cycles; it may be $N_{{\rm ex},r}, N_{{\rm ex},c} \equiv N_c$ and $N_{{\rm ex},\tau} \equiv N_{\tau}$; $N_{{\rm ex},r}$ may be N_r in smooth mode or N_l in breaking mode

Nex See $N_{\rm ex}$

 $N_{\rm exp}$ Experimental life

 N_i Abscissa of through-point of ith input *R*-prototype (see also $\sigma_{\text{max},i}$)

 n_i , Ni Number for interpolation; in EllipseT, n_i can be 1, 2, 3, 4, 6, 8, 12, 24 (24 is divisible by these values); in EllipseS, n_i can be any integer greater than 0; $n_i = 1$ means no interpolation

 N_l , N1 Number of cycles at the break of S-N line; serves for forming the limiting line (the nodamage area) L_l (in breaking mode)

 N_r Number of cycles (see also $N_{\rm ex}$) for forming the limiting line (the no-damage area) L_r (in smooth mode)

Nrct Number of R functions: 3, the R functions are R_r , R_c and $R_{\vec{c}}$; or 2, the R functions are R_r and R_c ; see also Code

 n_{ν} , Nv Number of values in a series for interpolation

 N_{τ} Number of cycles (see also $N_{\rm ex}$) for forming the limiting line (the no-damage area) L_{τ}

 p_i Relative statistical frequency of within a Δs_i interval

 p_{ij} Relative statistical frequency of appearing Δs elements within an (i,j) cell

Quotient (ratio) $\sigma_{\rm m}/\sigma_{\rm equ,m}$ at given k at $l_{\rm ekb,m}$ line; $q_k = \sigma_k/\sigma_{k=0}$ at l_N line

- *R* Damage intensity, *R* function of σ' and σ'' (or of \mathcal{E}' and \mathcal{E}'' , etc.); $R(s) = \mathrm{d}D(s)/\mathrm{d}s$ is derivative function to D(s); in particular, *R* is R_r , R_c , R_τ
- R Stress ratio: $R = s_{max}/s_{min}$
- R_c Damage intensity at ds_c
- $R_{\rm m}$ (Ultimate) static strength measure (σ_U)
- $R_{p0.2}$ Yield strength measure (σ_Y)
- R_r Damage intensity at ds_r
- R_{τ} Damage intensity at d τ
- S, S Stress; sum of Δs elements (ds differentials), length of (S) trajectory
- s, s Stress; distance from the coordinate origin to the running point of a trajectory, argument of R(s) and D(s)
- (S) Invariant trajectory consisting of Δs elements (ds differentials).
- S_c Sum of Δs_c elements (ds_c differentials), length of (S_c) trajectory
- (S_c) Trajectory consisting of Δs_c differentials (ds_c differentials)
- s_l , S1 Fatigue limit ($s_l \equiv s_{\text{max},l}$)
- s_r , Sr Limit to which an R_r prototype is extrapolated in smooth mode
- S_r Sum of Δs_r elements (ds_r differentials), length of (S_r) trajectory
- (S_r) Trajectory consisting of Δs_r elements ($\mathrm{d} s_r$ differentials)
- S_{xy} Sum of ΔS_{xy} elements ($\mathrm{d} S_{xy}$ differentials), length of (S_{xy}) trajectory
- (S_{xy}) Trajectory in X-Y plane (that is mostly σ - σ ' plane) consisting of Δs_{xy} elements (ds_{xy} differentials)
- S_{τ} Sum of $\Delta \tau$ elements (d τ differentials), length of (S_{τ}) trajectory
- (S_{τ}) Trajectory consisting of $\Delta \tau$ elements ($d\tau$ differentials)
- Time interval representative for the loading; period, cycle
- t Time
- t_c Trajectory ratio S_c/S
- t_r Trajectory ratio S_r/S
- t_{τ} Trajectory ratio S_{τ}/S
- v_i Axis of an ellipse giving its arc for composition of a line of equal life by involving input prototypes with indexes i and i+1
- x, y Variant (non-principal) axes of plane state of stress
- X,Y Common symbols for the axes of the coordinate plane of trajectory (S_{xy}) ; mostly, $X \equiv \sigma'$; see also Code; coordinates of current point of (S_{xy}) trajectory

X, Y See X, Y

 X_0, Y_0 Coordinates of previous point of (S_{xy}) trajectory

 $X \circ$, $Y \circ See X_0$, Y_0

Greek

- α Angle measured from x at which an infinitesimal cuboid is orientated
- Angle of orientation of the principal cuboid; $\alpha_0 = \alpha'$ if α' is within the interval (-45°, +45°) and $\alpha_0 = \alpha''$ if α'' is within the interval (+45°, -45°)
- α The angle at which the principal axis 'always is
- α'' The angle at which the principal axis " always is
- γ Shear strain
- γ^*_{xy} $\gamma^*_{xy} = \gamma_{xy}/2$
- Δ Finite difference substituting d differential; short straight-line segment (element)
- δ Initial phase angle; phase-shift angle; out-of-phase angle
- $\Delta \tau$ Component of Δs perpendicular to the σ - σ ' plane
- ε Normal strain
- \mathcal{E} , \mathcal{E} ' Principal strains
- η The bisector of the quadrants I and III of equal algebraic signs; coordinate (along the η axis) of the invariant (principal) point (σ', σ''): $η = (σ' + σ'')/\sqrt{2}$
- ν Poisson ratio
- The bisector of the quadrants II and IV of opposite algebraic signs; coordinate (along the ξ axis) of the invariant (principal) point (σ', σ') : $\xi = (\sigma' \sigma'')/\sqrt{2}$
- $\xi^* = (\sigma' \sigma'')/2 \text{ or } \xi^* = (\mathcal{E} \mathcal{E}'')/2$
- $\xi_{v}^{*} = (\sigma_{x} \sigma_{y})/2 \text{ or } \xi_{v}^{*} = (\varepsilon_{x} \varepsilon_{y})/2$
- ho Two-dimensional or one-dimensional density of an (S) trajectory; two-dimensional density (spectrum) of joint (mutual) distribution of the instantaneous (current) values of X(t) and Y(t); one-dimensional density (spectrum) of distribution of the instantaneous (current) values of S(t)
- ρ_{ij} $\rho_{ij} = p_{ij}/(\Delta X.\Delta Y)$ is discrete two-dimensional density
- Normal stress; σ_x , σ_y and τ_{xy} are the three stresses on a variant cuboid, and are the coordinates of the running (current) point of the variant trajectory in the σ_x - σ_y - τ_{xy} coordinate space
- σ_{-1} Fatigue limit of reversed stress cycle of uniaxial state of stress

 σ', σ' Principal stresses; coordinates of running (current) point of (S_{xy}) trajectory

 $\sigma_{\max,i}$ Ordinate of through-point of i^{th} input R-prototype (σ_{\max} , N, m, k, ψ) $_i \equiv (\sigma_{\max,i}$, N_i , m_i , k_i , ψ_i) against the abscissa N_i , and the prototype is an S-N line having the equation $\sigma_{\max}^{m_i} N = \sigma_{\max,i}^{m_i} N_i$

 σ_p, σ_p' Coordinates of previous (preceding, old) point of (S_{xy}) trajectory

 $\sigma_{
m equ}$ Equivalent stress

 $\sigma_{\rm equ,m}$ Equivalent static (mean) stress (equivalent to $\sigma_{\rm x,m}$, $\sigma_{\rm y,m}$ and $\tau_{\rm xy,m}$)

 σ_U (Limit of) ultimate (static) strength (R_m)

 σ_Y (Limit of) yield (static) strength ($R_{p0,2}$)

 τ Shear stress (see also σ)

 τ_1 Fatigue limit of reversed stress cycle of pure shear

 τ_U (Limit of) ultimate (static) pure shear strength

 τ_Y (Limit of) yield (static) pure shear strength

 ψ_{i} Angle of deviation of v_{i} from η , $-45^{0} < \psi_{i} < 45^{0}$, one of the parameters of i^{th} input Rprototype (see also $\sigma_{max,i}$)

The least possible area of the plane X-Y ($\sigma'-\sigma''$ etc.) from which a concrete invariant (S) trajectory does not go out

 ω Angular frequency; angular velocity